Lorenz system as nonlinearly connected first-order radiophysical RC-filters

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A radiophysical implementation of the Lorenz system demonstrating a chaotic attractor is proposed. It is shown that the form of the Lorenz equation allows it to be represented as a set of low-frequency first-order RC filters connected by nonlinear connections using electronic multipliers. A circuit consisting of three first-order radiotechnical RC filters and two multipliers is proposed. An electronic circuit is considered that allows for the effective implementation of a generator demonstrating the chaotic Lorenz attractor.

Texto integral

Acesso é fechado

Sobre autores

V. Ponomarenko

Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of RAS

Autor responsável pela correspondência
Email: ponomarenkovi@gmail.com
Rússia, 38, Zelyonaya Street, Saratov, 410019

M. Prokhorov

Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: ponomarenkovi@gmail.com
Rússia, 38, Zelyonaya Street, Saratov, 410019

Bibliografia

  1. Берже П, Помо И., Видаль К. Порядок в хаосе. О детерминистском подходе к турбулентности М.: Мир, 1991.
  2. Шустер Г. Детерминированный хаос. Введение. М: Мир, 1988.
  3. Tsay S.-C., Huang C.-K., Qiu D.-L., Chen W.-T. // Chaos, Solitons & Fractals. 2004. V. 20. № 3. P. 567.
  4. Пономаренко В.И., Прохоров М.Д. // РЭ. 2004. Т. 49. № 9. С. 1098.
  5. Дмитриев А.С., Кузьмин Л.В., Панас А.И., Старков С.О. // РЭ. 1998. Т. 43. № 9. С. 1115.
  6. Дмитриев А.С., Ефремова Е.В., Ицков В.В. и др. // РЭ. 2022. Т. 67. № 8. С. 797.
  7. Stojanovski T., Kocarev L. // IEEE Trans. 2001. V. CS-I-48. № 3. P. 281.
  8. Stojanovski T., Pihl J., Kocarev L. //IEEE Trans. 2001. V. CS-I-48. № 3. P. 382.
  9. Kocarev L. // IEEE Circuits and Systems Magazine. 2001. V. 1. № 3. P. 6.
  10. Aissaoui R., Deneuville J.-C., Guerber C., Pirovano A. // Vehicular Commun., 2023. V. 44. Article No. 100661.
  11. Andreyev Yu.V., Dmitriev A.A. // Proc. Int. Symp. Signals Circuits Systems (SCS’2001). Iasi. 10-11 Jul. 2001. P. 57.
  12. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Системы с запаздыванием (реконструкция моделей и их приложение). Саратов: Изд-во Саратов. ун-та, 2016.
  13. Cuomo K. M., Oppenheim A.V. // Phys. Rev. Lett. 1993. V. 71. № 1. P. 65.
  14. Ораевский А.Н. // Изв. вузов. Прикладная нелинейная динамика. 1996. Т. 4. № 1. C. 3.
  15. Haken H. // Phys. Lett. A. 1975. V. 53. № 1. P. 77.
  16. Doroshin A.V. // Commun. Nonlinear Sci. Numerical Simulation. 2011. V. 16. № 8. P. 3188.
  17. Poland D. // Physica D: Nonlinear Phenomena. 1993. V. 65. № 1. P. 86.
  18. Hemail N. // IEEE Trans. 1994. V. CS-I-41. № 1. P. 40.
  19. Jiang Y., Li C., Liu Z. et al. // IEEE Trans. 2022. V. CS-II-69. № 7. P. 3344.
  20. Lorenz E.N. // J. Atmospheric Sci. 1963. V. 20. № 2. P. 130.
  21. Тетельбаум И.М., Шнайдер Ю.Р. Практика аналогового моделирования динамических систем: Справочное пособие. М.: Энергоатомиздат, 1987.
  22. Butusov D.N., Karimov T.I., Lizunova I.A. et al. // 2017 IEEE Conf. Rus. Young Researchers in Electrical and Electronic Engineering (EIConRus). St. Petersburg and Moscow. 1-3 Feb. N.Y.: IEEE, 2017. P. 265.
  23. Itoh M. // Int. J. Bifurcation and Chaos. 2001. V. 11. № 3. P. 605.
  24. Кузнецов С.П. // Изв. вузов. Прикладная нелинейная динамика. 2018. Т. 26. № 3. C. 35.
  25. Campos-Cantón I., Soubervielle-Montalvo C., Martinez-Montejano R.C. // Integration, VLSI J. 2023. V. 90. P. 51.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Using integrators to implement the Lorenz system.

Baixar (78KB)
3. Fig. 2. First-order filter as an integration element.

Baixar (50KB)
4. Fig. 3. Schematic implementation of the Lorenz system using only multipliers and first-order low-pass filters.

Baixar (59KB)
5. Fig. 4. Schematic implementation of the Lorenz system using real models of op amps and electron multipliers.

Baixar (221KB)
6. Fig. 5. Phase portrait of the simulated Lorenz system shown in Fig. 4 (screenshot): the horizontal axis shows the Y variable, and the vertical axis shows the X variable.

Baixar (190KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024