Carbonization of α2-fraction isolated from thermosolvolysis coal pitch, analysis of the structure of carbonizates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article presents the results of the study of the composition and thermal transformations of α2-fraction (quinoline-soluble, toluene-insoluble), isolated from the pitch product of thermal dissolution of coal in a binary mixture of technical solvents of coal and oil origin. Based on thermal analysis data, the dynamics of α2-fraction destruction with the release of volatile substances in the temperature range up to 1100°C was established. Carbonized products were obtained by carbonization of the α2-fraction. The features of the molecular composition and spatial structure of the starting materials and the obtained carbonizates depending on temperature were studied using chemical analysis, IR spectroscopy, CP/MAS13C NMR and X-ray diffraction. A consistent transformation of spatial structural components into packet turbostratic and graphite domains was established. It was shown that at an elevated temperature of 1100°C, extended forms of graphite domains are formed — precursors of needle coke.

全文:

受限制的访问

作者简介

P. Kuznetsov

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

编辑信件的主要联系方式.
Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

B. Avid

Institute of Chemistry and Chemical Technology MAS

Email: kuzpn@icct.ru
蒙古, Ulaanbaata

L. Kuznetsova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

A. Zhizhaev

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

E. Kamensky

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

O. Fetisova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

G. Bondarenko

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

S. Novikova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
俄罗斯联邦, 660036 Krasnoyarsk

参考

  1. Predel H. Petroleum Coke, Ullmann’s Encyclopedia of Industrial Chemistry. Germany: Wiley-VCH Verlag GmbH & Co, 2014. Р. 1. https://doi.org/10.1002/14356007.a19_235.pub3
  2. Steppich D. Graphite Electrodes for Electric Arc Furnaces, Industrial Carbon and Graphite Materials. USA: John Wiley & Sons, Ltd., 2021. V. 1. Р. 281. https://doi.org/10.1002/9783527674046.ch6_5_3
  3. Ахметов М.М. // Мир нефтепродуктов. Вестник нефтяных компаний. 2015. № 4. С. 29.
  4. Gabdulkhakov R.R., Rudko V.A., Pyagay I.N. // Fuel. 2022. V. 310. Р. 122265. https://doi.org/10.1016/j.fuel.2021.122265
  5. Рудко В.А., Габдулхаков Р.Р., Пягай И.Н. // Записки Горного института. 2023. Т. 263. С. 795.
  6. Хайрудинов И.Р., Тихонов А.А., Ахметов М.М. // Башкирский химический журнал. 2011. Т. 18. № 3. С. 103.
  7. Mondal S., Yadav A., Pandey V., Sugumaran V. // Fuel. 2021. V. 304. Р. 121459. https://doi.org/10.1016/j.fuel.2021.121459
  8. Zhang Z., Du H., Guo S., Lou B. // Fuel. 2021. V. 301. Р. 120984. https://doi.org/10.1016/j.fuel.2021.120984
  9. Wu Z., Chen H., Cai X., Gou Q. // Energies. 2023. V. 16. Р. 4610. https://doi.org/10.3390/en16124610
  10. Pham D.D., Nguyen T.M., Ho T.H., Le Q.V., Nguyen D.L.T. // Fuel. 2024. V. 372. P. 132082. https://doi.org/10.1016/j.fuel.2024.132082
  11. Kozlov A.P., Cherkasova T.G., Frolov S.V., Subbotin S.P., Solodov V.S. // Coke Chem. 2020. V. 63. Р. 344. https://doi.org/10.3103/S1068364X20070054
  12. Stompel D.Z. Eastern European Coal Tar Market A.D. 2023; International Tar Association: Cocoa Beach, FL, USA, 2023. https://www.itaorg.com/conf-presentations.php? year=2023
  13. Hamaguchi M. // Light Metals. 2012. Р. 1219. https://doi.org/10.1007/978-3-319-48179-1_210
  14. Shimanoe H., Mashio T., Nakabayashi K., Inoue T. // Carbon. 2020. V. 158. P. 922. https://doi.org/10.1016/j.carbon.2019.11.082
  15. Yang J., Nakabayashi K., Miyawaki J., Yoon S.-H. // Carbon. 2016. V. 106. P. 28. https://doi.org/10.1016/j.carbon.2016.05.019
  16. Craddock J.D., Rantell T.D., Hower J.C., Whitlow D.T., Wiseman J., Weisenberger M.C. // Fuel. 2017. V. 187. P. 229. https://doi.org/10.1016/j.fuel.2016.09.045
  17. Thompson C., Frank G., Edwards V., Martinelli M., Vego A. // Carbon. 2024. V. 226. 119212. https://doi.org/10.1016/j.carbon.2024.119212
  18. Zhang Y., Liu X., Tian M., Zhu Y., Hua C., Zhao X. // RSC Advances. 2022. V. 12. P. 25860. https://doi.org/10.1039/d2ra03602a
  19. Zhang Z., Chen K., Liu D., Lou B., Li M. // Journal of Analytical and Applied Pyrolysis. 2021. V. 156. Р. 105097. https://doi.org/10.1016/j.jaap.2021.105097
  20. Kuznetsov P.N., Kamenskiy E.S., Kuznetsova L.I. // Energy Fuels. 2017. V. 31. P. 5402. https://doi.org/10.1021/acs.energyfuels.7b00158
  21. Kuznetsov P.N., Kamenskiy E.S., Kuznetsova L.I. // ACS Omega. 2020. V. 5. P. 14384. https://doi.org/10.1021/acsomega.0c00915
  22. Кузнецов П.Н., Сафин В.А., Авид Б., Кузнецова Л.И., Пурэвсурэн Б., Исмагилов З.Р. // ХТТ. 2021. № 2. С. 3. https://doi.org/10.31857/S0023117721020031 [Solid Fuel Chemistry. 2021. № 55. Р. 69. https://doi.org/10.3103/S0361521921020038]
  23. Kuznetsov P., Avid B., Kuznetsova L., Fan X., Xu J.-F., Kamenskiy E., Lyrschikov S. // Materials. 2025. V. 18. 1660. https://doi.org/10.3390/ma18071660
  24. Исмагилов З.Р., Созинов С.А., Попова А.Н., Запорин В.П. // Кокс и химия. 2019. № 4. С. 10.
  25. Solomon P.R., Carangelo R.M. // Fuel. 1988. V. 67. P. 949. https://doi.org/10.1016/0016-2361(88)90095-6
  26. Diaz C., Blanco C.G. // Energy Fuels. 2003. V. 17. P. 907. https://doi.org/10.1021/ef020114r
  27. Федорова Н.И., Лырщиков С.Ю., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2016. Т. 24. № 3. С. 393. https://doi.org/10.15372/KhUR20160315
  28. Созинов С.А., Попова А.Н., Лырщиков С.Ю., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2022. Т. 30. № 3. С. 553. https://doi.org/10.15372/KhUR2022413
  29. Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. Новосибирск: Изд-во СО РАН, 2002. 414 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of pitch fractionation to obtain the α2-fraction.

下载 (114KB)
3. Fig. 2. Scheme of the unit for carbonization of the α2-fraction.

下载 (153KB)
4. Fig. 3. TG and DTG curves for the α2-fraction and carbonates obtained from it (a), (b) and the total yield of volatile substances during programmed heating to 1100°C (c).

下载 (194KB)
5. Fig. 4. FTIR spectra for the initial pitch, the α2-fraction isolated from it and carbonates obtained at different temperatures; examples of deconvolution of bands in the region of 3100–3000 cm–1 (a), (b) and 900–700 cm–1 for pitch (b), (c).

下载 (250KB)
6. Fig. 5. CP/MAS 13C NMR spectra of pitch and α2-fraction isolated from it.

下载 (137KB)
7. Fig. 6. X-ray diffraction patterns of the initial α2-fraction and carbonization products at 300, 400, 600 and 1100°C.

下载 (145KB)
8. Fig. 7. Deconvolution of the main asymmetric diffraction reflection using the sample carbonized at 400°C as an example.

下载 (78KB)
9. Fig. 8. Change in the proportion of structural components depending on the carbonization temperature of the α2-fraction: 1 – gamma 2; 2 – gamma 1; 3 – turbostratic domain; 4 – graphite domain.

下载 (183KB)
10. Fig. 9. Change in the structure of graphite-like domains depending on the carbonization temperature: 1 – turbostratic; 2 – graphite (a); 1 – Lc, turbostratic; 2 – Lc, graphite; 3 – La, graphite (b).

下载 (390KB)

版权所有 © Russian Academy of Sciences, 2025