Carbonization of α2-fraction isolated from thermosolvolysis coal pitch, analysis of the structure of carbonizates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the results of the study of the composition and thermal transformations of α2-fraction (quinoline-soluble, toluene-insoluble), isolated from the pitch product of thermal dissolution of coal in a binary mixture of technical solvents of coal and oil origin. Based on thermal analysis data, the dynamics of α2-fraction destruction with the release of volatile substances in the temperature range up to 1100°C was established. Carbonized products were obtained by carbonization of the α2-fraction. The features of the molecular composition and spatial structure of the starting materials and the obtained carbonizates depending on temperature were studied using chemical analysis, IR spectroscopy, CP/MAS13C NMR and X-ray diffraction. A consistent transformation of spatial structural components into packet turbostratic and graphite domains was established. It was shown that at an elevated temperature of 1100°C, extended forms of graphite domains are formed — precursors of needle coke.

Full Text

Restricted Access

About the authors

P. N. Kuznetsov

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Author for correspondence.
Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

B. Avid

Institute of Chemistry and Chemical Technology MAS

Email: kuzpn@icct.ru
Mongolia, Ulaanbaata

L. I. Kuznetsova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

A. M. Zhizhaev

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

E. S. Kamensky

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

O. Yu. Fetisova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

G. N. Bondarenko

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

S. A. Novikova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

Email: kuzpn@icct.ru
Russian Federation, 660036 Krasnoyarsk

References

  1. Predel H. Petroleum Coke, Ullmann’s Encyclopedia of Industrial Chemistry. Germany: Wiley-VCH Verlag GmbH & Co, 2014. Р. 1. https://doi.org/10.1002/14356007.a19_235.pub3
  2. Steppich D. Graphite Electrodes for Electric Arc Furnaces, Industrial Carbon and Graphite Materials. USA: John Wiley & Sons, Ltd., 2021. V. 1. Р. 281. https://doi.org/10.1002/9783527674046.ch6_5_3
  3. Ахметов М.М. // Мир нефтепродуктов. Вестник нефтяных компаний. 2015. № 4. С. 29.
  4. Gabdulkhakov R.R., Rudko V.A., Pyagay I.N. // Fuel. 2022. V. 310. Р. 122265. https://doi.org/10.1016/j.fuel.2021.122265
  5. Рудко В.А., Габдулхаков Р.Р., Пягай И.Н. // Записки Горного института. 2023. Т. 263. С. 795.
  6. Хайрудинов И.Р., Тихонов А.А., Ахметов М.М. // Башкирский химический журнал. 2011. Т. 18. № 3. С. 103.
  7. Mondal S., Yadav A., Pandey V., Sugumaran V. // Fuel. 2021. V. 304. Р. 121459. https://doi.org/10.1016/j.fuel.2021.121459
  8. Zhang Z., Du H., Guo S., Lou B. // Fuel. 2021. V. 301. Р. 120984. https://doi.org/10.1016/j.fuel.2021.120984
  9. Wu Z., Chen H., Cai X., Gou Q. // Energies. 2023. V. 16. Р. 4610. https://doi.org/10.3390/en16124610
  10. Pham D.D., Nguyen T.M., Ho T.H., Le Q.V., Nguyen D.L.T. // Fuel. 2024. V. 372. P. 132082. https://doi.org/10.1016/j.fuel.2024.132082
  11. Kozlov A.P., Cherkasova T.G., Frolov S.V., Subbotin S.P., Solodov V.S. // Coke Chem. 2020. V. 63. Р. 344. https://doi.org/10.3103/S1068364X20070054
  12. Stompel D.Z. Eastern European Coal Tar Market A.D. 2023; International Tar Association: Cocoa Beach, FL, USA, 2023. https://www.itaorg.com/conf-presentations.php? year=2023
  13. Hamaguchi M. // Light Metals. 2012. Р. 1219. https://doi.org/10.1007/978-3-319-48179-1_210
  14. Shimanoe H., Mashio T., Nakabayashi K., Inoue T. // Carbon. 2020. V. 158. P. 922. https://doi.org/10.1016/j.carbon.2019.11.082
  15. Yang J., Nakabayashi K., Miyawaki J., Yoon S.-H. // Carbon. 2016. V. 106. P. 28. https://doi.org/10.1016/j.carbon.2016.05.019
  16. Craddock J.D., Rantell T.D., Hower J.C., Whitlow D.T., Wiseman J., Weisenberger M.C. // Fuel. 2017. V. 187. P. 229. https://doi.org/10.1016/j.fuel.2016.09.045
  17. Thompson C., Frank G., Edwards V., Martinelli M., Vego A. // Carbon. 2024. V. 226. 119212. https://doi.org/10.1016/j.carbon.2024.119212
  18. Zhang Y., Liu X., Tian M., Zhu Y., Hua C., Zhao X. // RSC Advances. 2022. V. 12. P. 25860. https://doi.org/10.1039/d2ra03602a
  19. Zhang Z., Chen K., Liu D., Lou B., Li M. // Journal of Analytical and Applied Pyrolysis. 2021. V. 156. Р. 105097. https://doi.org/10.1016/j.jaap.2021.105097
  20. Kuznetsov P.N., Kamenskiy E.S., Kuznetsova L.I. // Energy Fuels. 2017. V. 31. P. 5402. https://doi.org/10.1021/acs.energyfuels.7b00158
  21. Kuznetsov P.N., Kamenskiy E.S., Kuznetsova L.I. // ACS Omega. 2020. V. 5. P. 14384. https://doi.org/10.1021/acsomega.0c00915
  22. Кузнецов П.Н., Сафин В.А., Авид Б., Кузнецова Л.И., Пурэвсурэн Б., Исмагилов З.Р. // ХТТ. 2021. № 2. С. 3. https://doi.org/10.31857/S0023117721020031 [Solid Fuel Chemistry. 2021. № 55. Р. 69. https://doi.org/10.3103/S0361521921020038]
  23. Kuznetsov P., Avid B., Kuznetsova L., Fan X., Xu J.-F., Kamenskiy E., Lyrschikov S. // Materials. 2025. V. 18. 1660. https://doi.org/10.3390/ma18071660
  24. Исмагилов З.Р., Созинов С.А., Попова А.Н., Запорин В.П. // Кокс и химия. 2019. № 4. С. 10.
  25. Solomon P.R., Carangelo R.M. // Fuel. 1988. V. 67. P. 949. https://doi.org/10.1016/0016-2361(88)90095-6
  26. Diaz C., Blanco C.G. // Energy Fuels. 2003. V. 17. P. 907. https://doi.org/10.1021/ef020114r
  27. Федорова Н.И., Лырщиков С.Ю., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2016. Т. 24. № 3. С. 393. https://doi.org/10.15372/KhUR20160315
  28. Созинов С.А., Попова А.Н., Лырщиков С.Ю., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2022. Т. 30. № 3. С. 553. https://doi.org/10.15372/KhUR2022413
  29. Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. Новосибирск: Изд-во СО РАН, 2002. 414 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of pitch fractionation to obtain the α2-fraction.

Download (114KB)
3. Fig. 2. Scheme of the unit for carbonization of the α2-fraction.

Download (153KB)
4. Fig. 3. TG and DTG curves for the α2-fraction and carbonates obtained from it (a), (b) and the total yield of volatile substances during programmed heating to 1100°C (c).

Download (194KB)
5. Fig. 4. FTIR spectra for the initial pitch, the α2-fraction isolated from it and carbonates obtained at different temperatures; examples of deconvolution of bands in the region of 3100–3000 cm–1 (a), (b) and 900–700 cm–1 for pitch (b), (c).

Download (250KB)
6. Fig. 5. CP/MAS 13C NMR spectra of pitch and α2-fraction isolated from it.

Download (137KB)
7. Fig. 6. X-ray diffraction patterns of the initial α2-fraction and carbonization products at 300, 400, 600 and 1100°C.

Download (145KB)
8. Fig. 7. Deconvolution of the main asymmetric diffraction reflection using the sample carbonized at 400°C as an example.

Download (78KB)
9. Fig. 8. Change in the proportion of structural components depending on the carbonization temperature of the α2-fraction: 1 – gamma 2; 2 – gamma 1; 3 – turbostratic domain; 4 – graphite domain.

Download (183KB)
10. Fig. 9. Change in the structure of graphite-like domains depending on the carbonization temperature: 1 – turbostratic; 2 – graphite (a); 1 – Lc, turbostratic; 2 – Lc, graphite; 3 – La, graphite (b).

Download (390KB)

Copyright (c) 2025 Russian Academy of Sciences