Effect of Magnetic Field on Thermal Conductivity of Nitrogen-Doped Diamond
- Authors: Inyushkin A.V.1, Ralchenko V.G.2, Bolshakov A.P.2, Taldenkov A.N.1, Chernodubov D.A.1, Konov V.I.2
-
Affiliations:
- National Research Center Kurchatov Institute
- Prokhorov Institute of General Physics of the Russian Academy of Sciences
- Issue: Vol 521, No 1 (2025)
- Pages: 39-43
- Section: ФИЗИКА
- URL: https://filvestnik.nvsu.ru/2686-7400/article/view/684385
- DOI: https://doi.org/10.31857/S2686740025020039
- EDN: https://elibrary.ru/GORAJL
- ID: 684385
Cite item
Abstract
The measurement of the thermal conductivity κ(T) of a single crystal of nitrogen-doped diamond in the temperature range from 6 to 92 K in a magnetic field of 14 T is reported. A weak effect of the magnetic field on κ(T) at low temperatures is found. The process of phonon scattering on bound charge carriers of an impurity under conditions of strong Zeeman splitting is discussed.
About the authors
A. V. Inyushkin
National Research Center Kurchatov Institute
Author for correspondence.
Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow
V. G. Ralchenko
Prokhorov Institute of General Physics of the Russian Academy of Sciences
Email: vg_ralchenko@mail.ru
Russian Federation, Moscow
A. P. Bolshakov
Prokhorov Institute of General Physics of the Russian Academy of Sciences
Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow
A. N. Taldenkov
National Research Center Kurchatov Institute
Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow
D. A. Chernodubov
National Research Center Kurchatov Institute
Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow
V. I. Konov
Prokhorov Institute of General Physics of the Russian Academy of Sciences
Email: inyushkin_av@nrcki.ru
Academician of the RAS
Russian Federation, MoscowReferences
- Inyushkin A.V., Taldenkov A.N., Ralchenko V.G., Shu Guoyang, Dai Bing, Bolshakov A.P., Khomich A.A., Ashkinazi E.E., Boldyrev K.N., Khomich A.V., Han Jiecai, Konov V.I., Zhu Jiaqi. Thermal conductivity of pink CVD diamond: Influence of nitrogen-related centers // J. Appl. Phys. 2023. V. 133. № 2. P. 025102: 1–14. https://doi.org/10.1063/5.0115623
- Suzuki K., Mikoshiba N. Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si // J. Phys. Soc. Jpn. 1971. V. 31. № 1. P. 44–53. https://doi.org/10.1143/JPSJ.31.44
- Erratum: Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si // J. Phys. Soc. Jpn. 1972. V. 32. № 2. P. 586(E). https://doi.org/10.1143/JPSJ.32.586A
- Challis L.J., Halbo L. Evidence for a Jahn-Teller effect in p-Ge from magnetothermal conductivity measurements // Phys. Rev. Lett. 1972. V. 28. № 13. P. 816–819. https://doi.org/10.1103/PhysRevLett.28.816
- Challis L.J., Heraud A.P. Magnetothermal conductivity of boron-doped-silicon // Proc. 4th International Conference on Phonon Scattering in Condensed Matter, University of Stuttgart, Germany, August 22–26, 1983. Eds: W. Eisenmenger, K. Lassmann, and S. Dottinger (Springer, Berlin, 1984), P. 368–370.
- Inyushkin A.V., Taldenkov A.N., Ralchenko V.G., Bolshakov A.P., Koliadin A.V., Katrusha A.N. Thermal conductivity of high purity synthetic single crystal diamonds // Phys. Rev. B. 2018. V. 97. № 14. P. 144305: 1–10. https://doi.org/10.1103/PhysRevB.97.144305
- Callaway J. Model for lattice thermal conductivity at low temperatures // Phys. Rev. 1959. V. 113, № 4. P. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046
Supplementary files
