Effect of Magnetic Field on Thermal Conductivity of Nitrogen-Doped Diamond

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The measurement of the thermal conductivity κ(T) of a single crystal of nitrogen-doped diamond in the temperature range from 6 to 92 K in a magnetic field of 14 T is reported. A weak effect of the magnetic field on κ(T) at low temperatures is found. The process of phonon scattering on bound charge carriers of an impurity under conditions of strong Zeeman splitting is discussed.

About the authors

A. V. Inyushkin

National Research Center Kurchatov Institute

Author for correspondence.
Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow

V. G. Ralchenko

Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: vg_ralchenko@mail.ru
Russian Federation, Moscow

A. P. Bolshakov

Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow

A. N. Taldenkov

National Research Center Kurchatov Institute

Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow

D. A. Chernodubov

National Research Center Kurchatov Institute

Email: inyushkin_av@nrcki.ru
Russian Federation, Moscow

V. I. Konov

Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: inyushkin_av@nrcki.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Inyushkin A.V., Taldenkov A.N., Ralchenko V.G., Shu Guoyang, Dai Bing, Bolshakov A.P., Khomich A.A., Ashkinazi E.E., Boldyrev K.N., Khomich A.V., Han Jiecai, Konov V.I., Zhu Jiaqi. Thermal conductivity of pink CVD diamond: Influence of nitrogen-related centers // J. Appl. Phys. 2023. V. 133. № 2. P. 025102: 1–14. https://doi.org/10.1063/5.0115623
  2. Suzuki K., Mikoshiba N. Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si // J. Phys. Soc. Jpn. 1971. V. 31. № 1. P. 44–53. https://doi.org/10.1143/JPSJ.31.44
  3. Erratum: Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si // J. Phys. Soc. Jpn. 1972. V. 32. № 2. P. 586(E). https://doi.org/10.1143/JPSJ.32.586A
  4. Challis L.J., Halbo L. Evidence for a Jahn-Teller effect in p-Ge from magnetothermal conductivity measurements // Phys. Rev. Lett. 1972. V. 28. № 13. P. 816–819. https://doi.org/10.1103/PhysRevLett.28.816
  5. Challis L.J., Heraud A.P. Magnetothermal conductivity of boron-doped-silicon // Proc. 4th International Conference on Phonon Scattering in Condensed Matter, University of Stuttgart, Germany, August 22–26, 1983. Eds: W. Eisenmenger, K. Lassmann, and S. Dottinger (Springer, Berlin, 1984), P. 368–370.
  6. Inyushkin A.V., Taldenkov A.N., Ralchenko V.G., Bolshakov A.P., Koliadin A.V., Katrusha A.N. Thermal conductivity of high purity synthetic single crystal diamonds // Phys. Rev. B. 2018. V. 97. № 14. P. 144305: 1–10. https://doi.org/10.1103/PhysRevB.97.144305
  7. Callaway J. Model for lattice thermal conductivity at low temperatures // Phys. Rev. 1959. V. 113, № 4. P. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences