Continuous pulsed-periodic laser radiation generator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The application of an amplifying module developed for a pulse-periodic amplifier as an active medium of a pulse-periodic continuous-wave laser radiation generator is considered. The created computer model of such a generator is described. The results of computational experiments are presented. It is shown that in this generator in the free-running mode it is possible to obtain more than 80% of the pump energy conversion into coherent radiation of the generator.

Full Text

Restricted Access

About the authors

S. G. Garanin

The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics

Email: demyanov@triniti.ru

Academician of the RAS, Institute of Laser Physical Research

Russian Federation, Sarov, Nizhny Novgorod Region

A. V. Demyanov

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Author for correspondence.
Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow

V. N. Derkach

The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics

Email: demyanov@triniti.ru

Institute of Laser Physical Research

Russian Federation, Sarov, Nizhny Novgorod Region

K. N. Makarov

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow

V. A. Ostrovskiy

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow

M. I. Pergament

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow

References

  1. Mason P., Banerjee S., Smith J. et al. Efficient Operation of a High Energy Yb: YAG DPSSL Amplifier // Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019. (CLEO/Europe-EQEC). https://doi.org/10.1109/cleoe-eqec.2019.8871657
  2. Sekine T., Kurita T., Hatano Y. et al. 253 J at 0.2 Hz, LD pumped cryogenic helium gas cooled Yb: YAG ceramics laser // Opt. Express. 2022. V. 30. P. 44385. https://doi.org/10.1364/OE.470815
  3. Евтихиев Н.Н., Мясников Д.В. Волоконные лазеры и их применение в индустрии и медицине // Лазеры в науке, технике, медицине. 2023. С. 151–156.
  4. Azhari A., Sulaiman S., Prasada Rao A.K. A review on the application of peening processes for surface treatment // IOP Conference Series Materials Science and Engineering. February 2016. 114(1):012002. https://doi.org/10.1088/1757-899X/114/1/012002
  5. Jiajun Wu, Zhihu Zhou, Xingze Lin, Hongchao Qiao, Jibin Zhao, Wangwang Ding. Improving the Wear and Corrosion Resistance of Aeronautical Component Material by Laser Shock Processing: A Review // Materials. 2023. V. 16. № 11. 4124. https://doi.org/10.3390/ma16114124
  6. Łukasz Łach. Recent Advances in Laser Surface Hardening: Techniques, Modeling Approaches, and Industrial Applications // Crystals. 2024. V. 14. № 8. Р. 726. https://doi.org/10.3390/cryst14080726
  7. Zhang Ya., Wang C., Xu W., Zhang X. et al. Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties // Metals. 2024. V. 14. № 10. 1152. https://doi.org/10.3390/met14101152
  8. Парафонова В. Арктические маршруты лазера // Наука в России. 2014. № 2. С. 20–27.
  9. Блохин О.А., Востриков В.Г., Красюков А.Г. Мобильный лазерный комплекс для аварийно-восстановительных работ в газовой промышленности // Газовая промышленность. 2001. № 12. С. 33–34.
  10. Гаранин С.Г., Деркач В.Н., Макаров К.Н., Островский В.А., Пергамент М.И., Путилин М.В., Сизмин Д.В. Современные тенденции создания высокоэнергетических импульсно-периодических лазеров непрерывной генерации // Доклады РАН. Физика, технические науки. 2023. T. 513. № 1. C. 18–28. https://doi.org/10.1134/S1028335823120029
  11. Sun L., Guo Y., Shao C. et al. 10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd: YAG oscillator and an extra-cavity adaptive optics system // Opt. Lett. 2018. V. 43. № 17. P. 4160–4163. https://doi.org/10.1364/OL.43.004160
  12. Guo Y., Peng Q., Bo Y., et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd: YAG slab laser based on a stable–unstable hybrid cavity // Opt. Lett. 2020. V. 45. № 5. P. 1136–1139. https://doi.org/10.1364/OL.385387
  13. Демьянов А.В., Макаров К.Н., Островский В.А., Пергамент М.И. Усиление в среде Yb: YAG в диапазоне криогенных температур // Письма в ЖТФ. 2024. T. 50. № 14. C. 29–32. https://doi.org/10.61011/TPL.2024.07.58733.19799.9799

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diode-pumped solid-state laser: Z1, Z2 – resonator mirrors; VK – vacuum chamber, KK – cryogenic chamber; DN1, DN2 – diode pump radiation; DZ1, DZ2 – dichroic mirrors; AE – active elements (Yb: YAG).

Download (143KB)
3. Fig. 2. Wave front of a helium-cooled assembly. The scale on the right is in wavelengths (λ = 632 nm). The diameter of the pumped region is 80% of the AE diameter.

Download (71KB)
4. Fig. 3. Dependence of the gain and output power on the pumping time. (a, b) – αth = 0.005 cm–1 (R = 95%); (c, d) – αth = 0.136 cm–1 (R = 25%); (a, c) – Lc = 100; (b, d) – Lc = 300 cm. The red dotted line is the generation threshold.

Download (385KB)
5. Fig. 4. The fractions of the pump energy spent on the generated radiation, amplified spontaneous emission, and heating of the pumped region as a function of the pumping duration for Lc = 100 cm. (a) – αth = 0.005 cm–1 (R = 95%), (b) – αth = 0.035 cm–1 (R = 70%), (c) – αth = 0.068 cm–1 (R = 50%), (d) – αth = 0.136 cm–1 (R = 25%).

Download (341KB)

Copyright (c) 2025 Russian Academy of Sciences