Novel Celecoxib Derivative, RF26, Blocks Colon Cancer Cell Growth by Inhibiting PDE5, Activating cGMP/PKG Signaling, and Suppressing β-catenin-dependent Transcription


Цитировать

Полный текст

Аннотация

Background:Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (e.g., sildenafil) have been reported to have cancer chemopreventive activity.

Aim:This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth in vivo.

Objective:The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity.

Methods:Anticancer activity of RF26 was studied using human CRC cell lines. Its effects on intracellular cGMP levels, cGMP-dependent protein kinase (PKG) activity, β-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target.

Results:RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that increased intracellular cGMP levels and activated PKG signaling. RF26 suppressed β-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice.

Conclusion:Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.

Ключевые слова

Об авторах

Sara Sigler

Department of Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama

Email: info@benthamscience.net

Mohammad Abdel-Halim

Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo

Автор, ответственный за переписку.
Email: info@benthamscience.net

Reem Fathalla

Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo

Email: info@benthamscience.net

Luciana Da Silva

Department of Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama

Email: info@benthamscience.net

Adam Keeton

Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University

Email: info@benthamscience.net

Yulia Maxuitenko

Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University

Email: info@benthamscience.net

Kristy Berry

Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University

Email: info@benthamscience.net

Gang Zhou

Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta University

Email: info@benthamscience.net

Matthias Engel

Pharmaceutical and Medicinal Chemistry, Saarland University

Email: info@benthamscience.net

Ashraf Abadi

Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo

Email: info@benthamscience.net

Gary Piazza

Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164. doi: 10.3322/caac.21601 PMID: 32133645
  2. Walther, A.; Johnstone, E.; Swanton, C.; Midgley, R.; Tomlinson, I.; Kerr, D. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer, 2009, 9(7), 489-499. doi: 10.1038/nrc2645 PMID: 19536109
  3. Giles, R.H.; van Es, J.H.; Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta, 2003, 1653(1), 1-24. PMID: 12781368
  4. Powell, S.M.; Zilz, N.; Beazer-Barclay, Y.; Bryan, T.M.; Hamilton, S.R.; Thibodeau, S.N.; Vogelstein, B.; Kinzler, K.W. APC mutations occur early during colorectal tumorigenesis. Nature, 1992, 359(6392), 235-237. doi: 10.1038/359235a0 PMID: 1528264
  5. Cavallo, R.A.; Cox, R.T.; Moline, M.M.; Roose, J.; Polevoy, G.A.; Clevers, H.; Peifer, M.; Bejsovec, A. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 1998, 395(6702), 604-608. doi: 10.1038/26982 PMID: 9783586
  6. Goss, K.H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol., 2000, 18(9), 1967-1979. doi: 10.1200/JCO.2000.18.9.1967 PMID: 10784639
  7. Korinek, V.; Barker, N.; Morin, P.J.; van Wichen, D.; de Weger, R.; Kinzler, K.W.; Vogelstein, B.; Clevers, H. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science, 1997, 275(5307), 1784-1787. doi: 10.1126/science.275.5307.1784 PMID: 9065401
  8. Morin, P.J.; Sparks, A.B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler, K.W. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science, 1997, 275(5307), 1787-1790. doi: 10.1126/science.275.5307.1787 PMID: 9065402
  9. Giardiello, F.M.; Hamilton, S.R.; Krush, A.J.; Piantadosi, S.; Hylind, L.M.; Celano, P.; Booker, S.V.; Robinson, C.R.; Offerhaus, G.J.A. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med., 1993, 328(18), 1313-1316. doi: 10.1056/NEJM199305063281805 PMID: 8385741
  10. Steinbach, G.; Lynch, P.M.; Phillips, R.K.S.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952. doi: 10.1056/NEJM200006293422603 PMID: 10874062
  11. Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. NSAIDs inhibit tumorigenesis, but how? Clin. Cancer Res., 2014, 20(5), 1104-1113. doi: 10.1158/1078-0432.CCR-13-1573 PMID: 24311630
  12. Piazza, G.A.; Alberts, D.S.; Hixson, L.J.; Paranka, N.S.; Li, H.; Finn, T.; Bogert, C.; Guillen, J.M.; Brendel, K.; Gross, P.H.; Sperl, G.; Ritchie, J.; Burt, R.W.; Ellsworth, L.; Ahnen, D.J.; Pamukcu, R. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res., 1997, 57(14), 2909-2915. PMID: 9230200
  13. Charalambous, D.; O’Brien, P. Inhibition of colon cancer precursors in the rat by sulindac sulphone is not dependent on inhibition of prostaglandin synthesis. J. Gastroenterol. Hepatol., 1996, 11(4), 307-310. doi: 10.1111/j.1440-1746.1996.tb01376.x PMID: 8713695
  14. Piazza, G.A.; Rahm, A.L.K.; Krutzsch, M.; Sperl, G.; Paranka, N.S.; Gross, P.H.; Brendel, K.; Burt, R.W.; Alberts, D.S.; Pamukcu, R. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res., 1995, 55(14), 3110-3116. PMID: 7606732
  15. Arber, N.; Kuwada, S.; Leshno, M.; Sjodahl, R.; Hultcrantz, R.; Rex, D. Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study. Gut, 2006, 55(3), 367-373. doi: 10.1136/gut.2004.061432 PMID: 16150858
  16. Piazza, G.A.; Keeton, A.B.; Tinsley, H.N.; Gary, B.D.; Whitt, J.D.; Mathew, B.; Thaiparambil, J.; Coward, L.; Gorman, G.; Li, Y.; Sani, B.; Hobrath, J.V.; Maxuitenko, Y.Y.; Reynolds, R.C. A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev. Res. (Phila.), 2009, 2(6), 572-580. doi: 10.1158/1940-6207.CAPR-09-0001 PMID: 19470791
  17. Grösch, S.; Tegeder, I.; Niederberger, E.; Bräutigam, L.; Geisslinger, G. COX‐2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX‐2 inhibitor celecoxib. FASEB J., 2001, 15(14), 1-22. doi: 10.1096/fj.01-0299fje PMID: 11606477
  18. Sade, A.; Tunçay, S.; Çimen, İ.; Severcan, F.; Banerjee, S. Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Biosci. Rep., 2012, 32(1), 35-44. doi: 10.1042/BSR20100149 PMID: 21401528
  19. Schiffmann, S.; Maier, T.J.; Wobst, I.; Janssen, A.; Corban-Wilhelm, H.; Angioni, C.; Geisslinger, G.; Grösch, S. The anti-proliferative potency of celecoxib is not a class effect of coxibs. Biochem. Pharmacol., 2008, 76(2), 179-187. doi: 10.1016/j.bcp.2008.04.017 PMID: 18547544
  20. Zhu, J.; Huang, J.W.; Tseng, P.H.; Yang, Y.T.; Fowble, J.; Shiau, C.W.; Shaw, Y.J.; Kulp, S.K.; Chen, C.S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res., 2004, 64(12), 4309-4318. doi: 10.1158/0008-5472.CAN-03-4063 PMID: 15205346
  21. Thompson, W.J.; Piazza, G.A.; Li, H.; Liu, L.; Fetter, J.; Zhu, B.; Sperl, G.; Ahnen, D.; Pamukcu, R. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res., 2000, 60(13), 3338-3342. PMID: 10910034
  22. Piazza, G.A.; Thompson, W.J.; Pamukcu, R.; Alila, H.W.; Whitehead, C.M.; Liu, L.; Fetter, J.R.; Gresh, W.E., Jr; Klein-Szanto, A.J.; Farnell, D.R.; Eto, I.; Grubbs, C.J. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis. Cancer Res., 2001, 61(10), 3961-3968. PMID: 11358813
  23. Kwon, I.K.; Schoenlein, P.V.; Delk, J.; Liu, K.; Thangaraju, M.; Dulin, N.O.; Ganapathy, V.; Berger, F.G.; Browning, D.D. Expression of cyclic guanosine monophosphate‐dependent protein kinase in metastatic colon carcinoma cells blocks tumor angiogenesis. Cancer, 2008, 112(7), 1462-1470. doi: 10.1002/cncr.23334 PMID: 18260092
  24. Saha, S.; Chowdhury, P.; Pal, A.; Chakrabarti, M.K. Downregulation of human colon carcinoma cell (COLO‐205) proliferation through PKG‐MAP kinase mediated signaling cascade by E. coli heat stable enterotoxin (STa), a potent anti‐angiogenic and anti‐metastatic molecule. J. Appl. Toxicol., 2008, 28(4), 475-483. doi: 10.1002/jat.1297 PMID: 17828804
  25. Shailubhai, K.; Yu, H.H.; Karunanandaa, K.; Wang, J.Y.; Eber, S.L.; Wang, Y.; Joo, N.S.; Kim, H.D.; Miedema, B.W.; Abbas, S.Z.; Boddupalli, S.S.; Currie, M.G.; Forte, L.R. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res., 2000, 60(18), 5151-5157. PMID: 11016642
  26. Tinsley, H.N.; Gary, B.D.; Thaiparambil, J.; Li, N.; Lu, W.; Li, Y.; Maxuitenko, Y.Y.; Keeton, A.B.; Piazza, G.A. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev. Res. (Phila.), 2010, 3(10), 1303-1313. doi: 10.1158/1940-6207.CAPR-10-0030 PMID: 20876730
  27. Tinsley, H.N.; Gary, B.D.; Keeton, A.B.; Zhang, W.; Abadi, A.H.; Reynolds, R.C.; Piazza, G.A. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Mol. Cancer Ther., 2009, 8(12), 3331-3340. doi: 10.1158/1535-7163.MCT-09-0758 PMID: 19996273
  28. Tinsley, H.N.; Gary, B.D.; Keeton, A.B.; Lu, W.; Li, Y.; Piazza, G.A. Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells. Cancer Prev. Res. (Phila.), 2011, 4(8), 1275-1284. doi: 10.1158/1940-6207.CAPR-11-0095 PMID: 21505183
  29. Li, N.; Xi, Y.; Tinsley, H.N.; Gurpinar, E.; Gary, B.D.; Zhu, B.; Li, Y.; Chen, X.; Keeton, A.B.; Abadi, A.H.; Moyer, M.P.; Grizzle, W.E.; Chang, W.C.; Clapper, M.L.; Piazza, G.A. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling. Mol. Cancer Ther., 2013, 12(9), 1848-1859. doi: 10.1158/1535-7163.MCT-13-0048 PMID: 23804703
  30. Li, N.; Chen, X.; Zhu, B.; Ramírez-Alcántara, V.; Canzoneri, J.C.; Lee, K.; Sigler, S.; Gary, B.; Li, Y.; Zhang, W.; Moyer, M.P.; Salter, E.A.; Wierzbicki, A.; Keeton, A.B.; Piazza, G.A. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10. Oncotarget, 2015, 6(29), 27403-27415. doi: 10.18632/oncotarget.4741 PMID: 26299804
  31. Whitt, J.D.; Li, N.; Tinsley, H.N.; Chen, X.; Zhang, W.; Li, Y.; Gary, B.D.; Keeton, A.B.; Xi, Y.; Abadi, A.H.; Grizzle, W.E.; Piazza, G.A. A novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity. Cancer Prev. Res. (Phila.), 2012, 5(6), 822-833. doi: 10.1158/1940-6207.CAPR-11-0559 PMID: 22556201
  32. Islam, B.N.; Sharman, S.K.; Hou, Y.; Bridges, A.E.; Singh, N.; Kim, S.; Kolhe, R.; Trillo-Tinoco, J.; Rodriguez, P.C.; Berger, F.G.; Sridhar, S.; Browning, D.D. Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev. Res. (Phila.), 2017, 10(7), 377-388. doi: 10.1158/1940-6207.CAPR-17-0015 PMID: 28468928
  33. Lin, S.; Wang, J.; Wang, L.; Wen, J.; Guo, Y.; Qiao, W.; Zhou, J.; Xu, G.; Zhi, F. Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC. Am. J. Cancer Res., 2017, 7(1), 41-52. PMID: 28123846
  34. Bhagavathula, A.S.; Tesfaye, W.; Vidyasagar, K. Phosphodiesterase type 5 inhibitors use and risk of colorectal cancer: A systematic review and meta-analysis. Int. J. Colorectal Dis., 2021, 36(12), 2577-2584. doi: 10.1007/s00384-021-04022-5 PMID: 34508301
  35. Mei, X-L.; Yang, Y.; Zhang, Y-J.; Li, Y.; Zhao, J-M.; Qiu, J-G.; Zhang, W-J.; Jiang, Q-W.; Xue, Y-Q.; Zheng, D-W.; Chen, Y.; Qin, W.M.; Wei, M.N.; Shi, Z. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am. J. Cancer Res., 2015, 5(11), 3311-3324. PMID: 26807313
  36. Klein, T.; Eltze, M.; Grebe, T.; Hatzelmann, A.; Kömhoff, M. Celecoxib dilates guinea-pig coronaries and rat aortic rings and amplifies NO/cGMP signaling by PDE5 inhibition. Cardiovasc. Res., 2007, 75(2), 390-397. doi: 10.1016/j.cardiores.2007.02.026 PMID: 17383621
  37. Abdel-Halim, M.; Sigler, S.; Racheed, N.A.S.; Hefnawy, A.; Fathalla, R.K.; Hammam, M.A.; Maher, A.; Maxuitenko, Y.; Keeton, A.B.; Hartmann, R.W.; Engel, M.; Piazza, G.A.; Abadi, A.H. From celecoxib to a novel class of phosphodiesterase 5 inhibitors: Trisubstituted pyrazolines as novel phosphodiesterase 5 inhibitors with extremely high potency and phosphodiesterase isozyme selectivity. J. Med. Chem., 2021, 64(8), 4462-4477. doi: 10.1021/acs.jmedchem.0c01120 PMID: 33793216
  38. Abdel-Halim, M.; Tinsley, H.; Keeton, A.B.; Weam, M.; Atta, N.H.; Hammam, M.A.; Hefnawy, A.; Hartmann, R.W.; Engel, M.; Piazza, G.A.; Abadi, A.H. Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors. Bioorg. Chem., 2020, 104, 104322. doi: 10.1016/j.bioorg.2020.104322 PMID: 33142429
  39. Butt, E.; Abel, K.; Krieger, M.; Palm, D.; Hoppe, V.; Hoppe, J.; Walter, U. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem., 1994, 269(20), 14509-14517. doi: 10.1016/S0021-9258(17)36652-8 PMID: 8182057
  40. Tinsley, H.N.; Grizzle, W.E.; Abadi, A.; Keeton, A.; Zhu, B.; Xi, Y.; Piazza, G.A. New NSAID targets and derivatives for colorectal cancer chemoprevention. Recent Results Cancer Res., 2013, 191, 105-120. doi: 10.1007/978-3-642-30331-9_6 PMID: 22893202
  41. Vighi, E.; Rentsch, A.; Henning, P.; Comitato, A.; Hoffmann, D.; Bertinetti, D.; Bertolotti, E.; Schwede, F.; Herberg, F.W.; Genieser, H.G.; Marigo, V. New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget, 2018, 9(4), 5301-5320. doi: 10.18632/oncotarget.23685 PMID: 29435180
  42. Zhu, B.; Lindsey, A.; Li, N.; Lee, K.; Ramirez-Alcantara, V.; Canzoneri, J.C.; Fajardo, A.; Madeira da Silva, L.; Thomas, M.; Piazza, J.T.; Yet, L.; Eberhardt, B.T.; Gurpinar, E.; Otali, D.; Grizzle, W.; Valiyaveettil, J.; Chen, X.; Keeton, A.B.; Piazza, G.A. Phosphodiesterase 10A is overexpressed in lung tumor cells and inhibitors selectively suppress growth by blocking β-catenin and MAPK signaling. Oncotarget, 2017, 8(41), 69264-69280. doi: 10.18632/oncotarget.20566 PMID: 29050202
  43. Ding, P.R.; Tiwari, A.K.; Ohnuma, S.; Lee, J.W.K.K.; An, X.; Dai, C.L.; Lu, Q.S.; Singh, S.; Yang, D.H.; Talele, T.T.; Ambudkar, S.V.; Chen, Z.S. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One, 2011, 6(4), e19329. doi: 10.1371/journal.pone.0019329 PMID: 21552528
  44. Hussain, M.; Javeed, A.; Ashraf, M.; Al-Zaubai, N.; Stewart, A.; Mukhtar, M.M. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol. Res., 2012, 66(1), 7-18. doi: 10.1016/j.phrs.2012.02.003 PMID: 22449788
  45. Zelenay, S.; van der Veen, A.G.; Böttcher, J.P.; Snelgrove, K.J.; Rogers, N.; Acton, S.E.; Chakravarty, P.; Girotti, M.R.; Marais, R.; Quezada, S.A.; Sahai, E.; Reis e Sousa, C. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 2015, 162(6), 1257-1270. doi: 10.1016/j.cell.2015.08.015 PMID: 26343581
  46. Piazza, G.A.; Ward, A.; Chen, X.; Maxuitenko, Y.; Coley, A.; Aboelella, N.S.; Buchsbaum, D.J.; Boyd, M.R.; Keeton, A.B.; Zhou, G. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discov. Today, 2020, 25(8), 1521-1527. doi: 10.1016/j.drudis.2020.06.008 PMID: 32562844
  47. Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med., 2006, 203(12), 2691-2702. doi: 10.1084/jem.20061104 PMID: 17101732
  48. Noonan, K.A.; Ghosh, N.; Rudraraju, L.; Bui, M.; Borrello, I. Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol. Res., 2014, 2(8), 725-731. doi: 10.1158/2326-6066.CIR-13-0213 PMID: 24878583

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025