Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol


Citar

Texto integral

Resumo

:Colorectal cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiation- and immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate, alternative combination therapies. Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death. Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which is found to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibits tumour metastasis and secondary spread. This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and so enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.

Sobre autores

Nkune Nkune

,

Email: info@benthamscience.net

Cherie Kruger

,

Autor responsável pela correspondência
Email: info@benthamscience.net

Heidi Abrahamse

,

Email: info@benthamscience.net

Bibliografia

  1. Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.doi: 10.1038/s41392-017-0004-3 PMID: 29560283
  2. Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.doi: 10.3322/caac.21349 PMID: 27253694
  3. Marley, A.R.; Nan, H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet., 2016, 7(3), 105-114.PMID: 27766137
  4. Mishra, J.; Drummond, J.; Quazi, S.H.; Karanki, S.S.; Shaw, J.J.; Chen, B.; Kumar, N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit. Rev. Oncol. Hematol., 2013, 86(3), 232-250.doi: 10.1016/j.critrevonc.2012.09.014 PMID: 23098684
  5. Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol., 2017, 39(10)1010428317734691doi: 10.1177/1010428317734691 PMID: 28990490
  6. Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.doi: 10.3390/ijms18010197 PMID: 28106826
  7. Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1(15065), 15065.doi: 10.1038/nrdp.2015.65 PMID: 27189416
  8. Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging, 2016, 11, 967-976.doi: 10.2147/CIA.S109285 PMID: 27486317
  9. Kruger, C.A.; Abrahamse, H. Targeted Photodynamic Therapy as Potential treatment modality for eradication of colon cancer. Multidisciplinary Colorectal cancer; IntechOpen: UK, 2019.
  10. Taieb, J.; André, T.; Auclin, E. Refining adjuvant therapy for non-metastatic colon cancer, new standards and perspectives. Cancer Treat. Rev., 2019, 75, 1-11.doi: 10.1016/j.ctrv.2019.02.002 PMID: 30849607
  11. Varghese, A. Chemotherapy for stage II colon cancer. Clin. Colon Rectal Surg., 2015, 28(04), 256-261.
  12. De Rosa, M.; Pace, U.; Rega, D.; Costabile, V.; Duraturo, F.; Izzo, P.; Delrio, P. Genetics, diagnosis and management of colorectal cancer.(Review) Oncol. Rep., 2015, 34(3), 1087-1096.PMID: 10.3892/or.2015.4108 PMID: 26151224
  13. Dienstmann, R.; Mason, M.J.; Sinicrope, F.A.; Phipps, A.I.; Tejpar, S.; Nesbakken, A.; Danielsen, S.A.; Sveen, A.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Bot, B.; Alberts, S.R.; Milburn Jessup, J.; Lothe, R.A.; Delorenzi, M.; Newcomb, P.A.; Sargent, D.; Guinney, J. Prediction of overall survival in stage II and III colon cancer beyond TNM system: A retrospective, pooled biomarker study. Ann. Oncol., 2017, 28(5), 1023-1031.doi: 10.1093/annonc/mdx052 PMID: 28453697
  14. Benarba, B.; Pandiella, A. Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomed. Pharmacother., 2018, 107, 408-423.doi: 10.1016/j.biopha.2018.08.006 PMID: 30099345
  15. Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.doi: 10.1016/j.ejmech.2017.12.039 PMID: 29289883
  16. Rentsch, M.; Schiergens, T.; Khandoga, A.; Werner, J. Surgery for colorectal cancer - trends, developments, and future perspectives. Visc. Med., 2016, 32(3), 184-191.doi: 10.1159/000446490 PMID: 27493946
  17. Viswanath, B.; Kim, S.; Lee, K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int. J. Nanomedicine, 2016, 11, 2491-2504.PMID: 27330292
  18. Kwiatt, M.; Kawata, M. Avoidance and management of stomal complications. Clin. Colon Rectal Surg., 2013, 26(02), 112-121.doi: 10.1055/s-0033-1348050
  19. Gianfaldoni, S.; Gianfaldoni, R.; Wollina, U.; Lotti, J.; Tchernev, G.; Lotti, T. An overview on radiotherapy: From its history to its current applications in dermatology. Open Access Maced. J. Med. Sci., 2017, 5(4), 521-525.doi: 10.3889/oamjms.2017.122 PMID: 28785349
  20. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.doi: 10.7150/ijms.3635 PMID: 22408567
  21. Kim, J.H. Controversial issues in radiotherapy for rectal cancer: A systematic review. Radiat. Oncol. J., 2017, 35(4), 295-305.doi: 10.3857/roj.2017.00395 PMID: 29325395
  22. Jaffray, D.A.; Gospodarowicz, M.K. Disease Control Priorities, 3rd ed; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015.
  23. Denlinger, C.S.; Barsevick, A.M. The challenges of colorectal cancer survivorship. J. Natl. Compr. Canc. Netw., 2009, 7(8), 883-893.doi: 10.6004/jnccn.2009.0058 PMID: 19755048
  24. Birgisson, H.; Påhlman, L.; Gunnarsson, U.; Glimelius, B. Late adverse effects of radiation therapy for rectal cancer - a systematic overview. Acta Oncol., 2007, 46(4), 504-516.doi: 10.1080/02841860701348670 PMID: 17497318
  25. Bruheim, K.; Guren, M.G.; Skovlund, E.; Hjermstad, M.J.; Dahl, O.; Frykholm, G.; Carlsen, E.; Tveit, K.M. Late side effects and quality of life after radiotherapy for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(4), 1005-1011.doi: 10.1016/j.ijrobp.2009.03.010 PMID: 19540058
  26. Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656.doi: 10.3390/ijms18030656 PMID: 28304343
  27. Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic therapy for metastatic melanoma treatment: A review. Technol. Cancer Res. Treat., 2018, 171533033818791795doi: 10.1177/1533033818791795 PMID: 30099929
  28. Palaghia, M.; Prelipcean, C.C.; Cotea, E.; Vlad, N.; Leneschi, L. Metastatic colorectal cancer: Review of diagnosis and treatment options. J. Surg. (Northborough), 2015, 10(4), 249-256.
  29. Geng, F.; Wang, Z.; Yin, H.; Yu, J.; Cao, B. Molecular targeted drugs and treatment of colorectal cancer: Recent progress and future perspectives. Cancer Cancer Biother. Radiopharm., 2017, 32(5), 149-160.doi: 10.1089/cbr.2017.2210 PMID: 28622036
  30. Brar, G.; Marshall, J.L.; Pishvaian, M.J. Targeted therapy and the use of molecular profiling in metastatic colorectal cancer. Am. J. Hematol., 2017, 13(9)
  31. Ohhara, Y.; Fukuda, N.; Takeuchi, S.; Honma, R.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H. Role of targeted therapy in metastatic colorectal cancer. World J. Gastrointest. Oncol., 2016, 8(9), 642-655.doi: 10.4251/wjgo.v8.i9.642 PMID: 27672422
  32. Ahluwalia, A.; Jones, M.K.; Matysiak-Budnik, T.; Tarnawski, A.S. VEGF and colon cancer growth beyond angiogenesis: Does VEGF directly mediate colon cancer growth via a non-angiogenic mechanism? Curr. Pharm. Des., 2014, 20(7), 1041-1044.doi: 10.2174/1381612819999131218175905 PMID: 23755727
  33. Lee, S.Y.; Oh, S.C. Advances of targeted therapy in treatment of unresectable metastatic colorectal cancer. BioMed Res. Int., 2016, 20167590245doi: 10.1155/2016/7590245 PMID: 27127793
  34. Hagan, S.; Orr, M.C.; Doyle, B. Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J., 2013, 4(1), 3.doi: 10.1186/1878-5085-4-3 PMID: 23356214
  35. Lin, B.R.; Lin, Y.L.; Lai, H.S.; Lee, P.H.; Chang, K.J.; Liang, J.T. Overall survival of stage III colon cancer with only one lymph node metastasis is independently predicted by preoperative carcinoembryonic antigen level and lymph node sampling status. PLoS One, 2015, 10(9)e0137053doi: 10.1371/journal.pone.0137053 PMID: 26381396
  36. Nakayama, G.; Tanaka, C.; Kodera, Y. Current options for the diagnosis, staging and therapeutic management of colorectal cancer. Gastrointest. Tumors, 2013, 1(1), 25-32.doi: 10.1159/000354995 PMID: 26674429
  37. Cheasley, D.; Jorissen, R.N.; Liu, S.; Tan, C.W.; Love, C.; Palmieri, M.; Sieber, O.M. Genomic approach to translational studies in colorectal cancer. Transl. Cancer Res., 2015, 4(3), 235-255.
  38. Shida, D.; Tanabe, T.; Boku, N.; Takashima, A.; Yoshida, T.; Tsukamoto, S.; Kanemitsu, Y. Prognostic value of primary tumor sidedness for unresectable stage IV colorectal cancer: A retrospective study. Ann. Surg. Oncol., 2019, 26(5), 1358-1365.doi: 10.1245/s10434-019-07209-x PMID: 30719633
  39. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.doi: 10.1016/j.biopha.2018.07.049 PMID: 30119176
  40. Mansoori, B.; Mohammadi, A.; Amin Doustvandi, M.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagn. Photodyn. Ther., 2019, 26, 395-404.doi: 10.1016/j.pdpdt.2019.04.033 PMID: 31063860
  41. Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B, 2016, 6(4), 297-307.doi: 10.1016/j.apsb.2016.01.007 PMID: 27471670
  42. Sekhejane, P.R.; Houreld, N.N.; Abrahamse, H. Multiorganelle localization of metallated phthalocyanine photosensitizer in colorectal cancer cells (DLD-1 and CaCo-2) enhances efficacy of photodynamic therapy. Int. J. Photoenergy, 2014, 2014 Article ID 383027doi: 10.1155/2014/383027
  43. Kruger, C.A.; Abrahamse, H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules, 2018, 23(10), 2628.doi: 10.3390/molecules23102628 PMID: 30322132
  44. De Freitas, L.F.; Hamblin, M.R. Antimicrobial photoinactivation with functionalized fullerenes. In: Nanobiomaterials in Antimicrobial Therapy; William Andrew Publishing: Bucharest, Romania, 2016, pp. 1-27.doi: 10.1016/B978-0-323-42864-4.00001-4
  45. Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.doi: 10.1042/BJ20150942 PMID: 26862179
  46. O'Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 2009, 85(5), 1053-1074.doi: 10.1111/j.1751-1097.2009.00585.x PMID: 19682322
  47. Tanaka, M.; Kataoka, H.; Mabuchi, M.; Sakuma, S.; Takahashi, S.; Tujii, R.; Akashi, H.; Ohi, H.; Yano, S.; Morita, A.; Joh, T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res., 2011, 31(3), 763-769.PMID: 21498693
  48. Abdulrehman, G.; Xv, K.; Li, Y.; Kang, L. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials. Lasers Med. Sci., 2018, 33(7), 1581-1590.doi: 10.1007/s10103-018-2524-7 PMID: 29796953
  49. Yang, K.; Niu, T.; Luo, M.; Tang, L.; Kang, L. Enhanced cytotoxicity and apoptosis through inhibiting autophagy in metastatic potential colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagn. Photodyn., 2018, 24, 332-341.doi: 10.1016/j.pdpdt.2018.10.012
  50. Li, Y.; Yu, Y.; Kang, L.; Lu, Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int. J. Clin. Exp. Med., 2014, 7(12), 4867-4876.PMID: 25663983
  51. Kawczyk-Krupka, A.; Latos, W.; Oleś, P.; Czuba, Z.P.; Latos, M.; Krupka, M.; Pengyun, H.; Xu, C.; Cieślar, G.; Sieroń, A. The influence of 5-aminolevulinic photodynamic therapy on colon cancer cell interleukin secretion in hypoxia-like condition in vitro. Photodiagn. Photodyn. Ther., 2018, 23, 240-243.doi: 10.1016/j.pdpdt.2018.07.007 PMID: 30016752
  52. Kim, J.H.; Park, J.M.; Roh, Y.J.; Kim, I.W.; Hasan, T.; Choi, M.G. Enhanced efficacy of photodynamic therapy by inhibiting ABCG2 in colon cancers. BMC Cancer, 2015, 15(1), 504.doi: 10.1186/s12885-015-1514-4 PMID: 26149077
  53. Şueki, F.; Ruhi, M.K.; Gülsoy, M. The Effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther., 2019, 27, 95-99.
  54. Ouyang, G.; Xiong, L.; Liu, Z.; Lam, B.; Bui, B.; Ma, L.; Chen, X.; Zhou, P.; Wang, K.; Zhang, Z.; Huang, H.; Miao, X.; Chen, W.; Wen, Y. Inhibition of autophagy potentiates the apoptosis-inducing effects of photodynamic therapy on human colon cancer cells. Photodiagn. Photodyn. Ther., 2018, 21, 396-403.doi: 10.1016/j.pdpdt.2018.01.010 PMID: 29355734
  55. Zhu, B.; Li, S.; Yu, L.; Hu, W.; Sheng, D.; Hou, J.; Zhao, N.; Hou, X.; Wu, Y.; Han, Z.; Wei, L.; Zhang, L. Inhibition of autophagy with chloroquine enhanced sinoporphyrin sodium mediated photodynamic therapy-induced apoptosis in human colorectal cancer cells. Int. J. Biol. Sci., 2019, 15(1), 12-23.doi: 10.7150/ijbs.27156 PMID: 30662343
  56. Sanovic, R.; Verwanger, T.; Hartl, A.; Krammer, B. Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma. Photodiagn. Photodyn. Ther., 2011, 8(4), 291-296.doi: 10.1016/j.pdpdt.2011.04.003 PMID: 22122915
  57. Peng, C.L.; Lin, H.C.; Chiang, W.L.; Shih, Y.H.; Chiang, P.F.; Luo, T.Y.; Cheng, C.C.; Shieh, M.J. Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer. Photodiagn. Photodyn. Ther., 2018, 23, 111-118.doi: 10.1016/j.pdpdt.2018.06.008 PMID: 29894822
  58. Li, P.T.; Ke, E.S.; Chiang, P.C.; Tsai, T. ALA-or Ce6-PDT induced phenotypic change and suppressed migration in surviving cancer cells. J. Dent. Sci., 2015, 10(1), 74-80.doi: 10.1016/j.jds.2013.10.005
  59. Hatakeyama, T.; Murayama, Y.; Komatsu, S.; Shiozaki, A.; Kuriu, Y.; Ikoma, H.; Nakanishi, M.; Ichikawa, D.; Fujiwara, H.; Okamoto, K.; Ochiai, T.; Kokuba, Y.; Inoue, K.; Nakajima, M.; Otsuji, E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol. Rep., 2013, 29(3), 911-916.doi: 10.3892/or.2013.2220 PMID: 23291627
  60. Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract., 2015, 24(1)(Suppl. 1), 14-28.doi: 10.1159/000362416 PMID: 24820409
  61. Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.doi: 10.1039/C6CS00271D PMID: 27722328
  62. Baskaran, R.; Lee, J.; Yang, S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res., 2018, 22(1), 25.doi: 10.1186/s40824-018-0140-z PMID: 30275968
  63. Wei, M.F.; Chen, M.W.; Chen, K.C.; Lou, P.J.; Lin, S.Y.F.; Hung, S.C.; Hsiao, M.; Yao, C.J.; Shieh, M.J. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy, 2014, 10(7), 1179-1192.doi: 10.4161/auto.28679 PMID: 24905352
  64. Shams, M.; Owczarczak, B.; Manderscheid-Kern, P.; Bellnier, D.A.; Gollnick, S.O. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol. Immunother., 2015, 64(3), 287-297.doi: 10.1007/s00262-014-1633-9 PMID: 25384911
  65. Jeong, S.; Yun, H.K.; Jeong, Y.A.; Jo, M.J.; Kang, S.H.; Kim, J.L.; Kim, D.Y.; Park, S.H.; Kim, B.R.; Na, Y.J.; Lee, S.I.; Kim, H.D.; Kim, D.H.; Oh, S.C.; Lee, D.H. Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett., 2019, 447, 12-23.doi: 10.1016/j.canlet.2019.01.011 PMID: 30660647
  66. Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019 Article ID 3702518doi: 10.1155/2019/3702518
  67. Bi, Y.; Hao, F.; Yan, G.; Teng, L.; Lee, R.J.; Xie, J. Actively targeted nanoparticles for drug delivery to tumor. Curr. Drug Metab., 2016, 17(8), 763-782.doi: 10.2174/1389200217666160619191853 PMID: 27335116
  68. Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.doi: 10.1016/j.jsps.2017.10.012 PMID: 29379334
  69. Wang, J.; Hu, X.; Xiang, D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv., 2018, 25(1), 1319-1327.doi: 10.1080/10717544.2018.1477857 PMID: 29869539
  70. Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomedicine, 2018, 13, 3921-3935.doi: 10.2147/IJN.S165210 PMID: 30013345
  71. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  72. Portilho, F.A.; Cavalcanti, C.E.D.; Miranda-Vilela, A.L.; Estevanato, L.L.C.; Longo, J.P.F.; Almeida Santos, M.F.; Bocca, A.L.; Martins, O.P.; Simioni, A.R.; Morais, P.C.; Azevedo, R.B.; Tedesco, A.C.; Lacava, Z.G. Antitumor activity of photodynamic therapy performed with nanospheres containing zinc-phthalocyanine. J. Nanobiotechnology, 2013, 11(1), 41.doi: 10.1186/1477-3155-11-41 PMID: 24341795
  73. García Calavia, P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552.doi: 10.1039/C8PP00271A PMID: 30118115
  74. Tombe, S.; Antunes, E.; Nyokong, T. The photophysical and photochemical behavior of coumarin-derivatized zinc phthalocyanine when conjugated with gold nanoparticles and electrospun into polymer fibers. New J. Chem., 2013, 37(3), 679-689.doi: 10.1039/C2NJ40984D
  75. Nombona, N.; Antunes, E.; Litwinski, C.; Nyokong, T. Synthesis and photophysical studies of phthalocyanine-gold nanoparticle conjugates. Dalton Trans., 2011, 40(44), 11876-11884.doi: 10.1039/c1dt11151e PMID: 21971707
  76. da Volta Soares, M.; Oliveira, M.R.; dos Santos, E.P.; de Brito Gitirana, L.; Barbosa, G.M.; Quaresma, C.H.; Ricci-Júnior, E. Nanostructured delivery system for zinc phthalocyanine: Preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells. Int. J. Nanomedicine, 2011, 6, 227-238.PMID: 21499420
  77. Sukumar, U.K.; Bhushan, B.; Dubey, P.; Matai, I.; Sachdev, A.; Packirisamy, G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett., 2013, 3(1), 45.doi: 10.1186/2228-5326-3-45
  78. Colombeau, L.; Acherar, S.; Baros, F.; Arnoux, P.; Gazzali, A.M.; Zaghdoudi, K.; Toussaint, M.; Vanderesse, R.; Frochot, C. Inorganic nanoparticles for photodynamic therapy. In: Light-responsive nanostructured systems for applications in nanomedicine; Springer: Cham, 2016, pp. 113-134.doi: 10.1007/978-3-319-22942-3_4
  79. Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use. Biomed. Pharmacother., 2016, 83, 912-929.doi: 10.1016/j.biopha.2016.07.058 PMID: 27522005
  80. Kawczyk-Krupka, A.; Bugaj, A.M.; Latos, W.; Zaremba, K.; Wawrzyniec, K.; Kucharzewski, M.; Sieroń, A. Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagn. Photodyn. Ther., 2016, 13, 158-174.doi: 10.1016/j.pdpdt.2015.07.175 PMID: 26238625
  81. Pietersz, G.A.; Wang, X.; Yap, M.L.; Lim, B.; Peter, K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond.), 2017, 12(15), 1873-1889.doi: 10.2217/nnm-2017-0043 PMID: 28703636
  82. Shirasu, N.; Nam, S.O.; Kuroki, M. Tumor-targeted photodynamic therapy. Anticancer Res., 2013, 33(7), 2823-2831.PMID: 23780966
  83. Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.doi: 10.1007/s00432-014-1767-3 PMID: 25005786
  84. St Denis, T.G.; Hamblin, M.R. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy. Bioanalysis, 2013, 5(9), 1099-1114.doi: 10.4155/bio.13.37 PMID: 23641699
  85. Babu, A.; Templeton, A.K.; Munshi, A.; Ramesh, R. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges. J. Nanomater., 2013, 2013Article ID 863951doi: 10.1155/2013/863951
  86. Magee, M.S.; Kraft, C.L.; Abraham, T.S.; Baybutt, T.R.; Marszalowicz, G.P.; Li, P.; Waldman, S.A.; Snook, A.E. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. OncoImmunology, 2016, 5(10)e1227897doi: 10.1080/2162402X.2016.1227897 PMID: 27853651
  87. Danaee, H.; Kalebic, T.; Wyant, T.; Fassan, M.; Mescoli, C.; Gao, F.; Trepicchio, W.L.; Rugge, M. Consistent expression of guanylyl cyclase-C in primary and metastatic gastrointestinal cancers. PLoS One, 2017, 12(12)e0189953doi: 10.1371/journal.pone.0189953 PMID: 29261789
  88. Wu, H.Y.; Jan, T.R. Cannabidiol hydroxyquinone-induced apoptosis of splenocytes is mediated predominantly by thiol depletion. Toxicol. Lett., 2010, 195(1), 68-74.doi: 10.1016/j.toxlet.2010.02.012 PMID: 20184945
  89. Wu, H.Y.; Huang, C.H.; Lin, Y.H.; Wang, C.C.; Jan, T.R. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic. Biol. Med., 2018, 124, 311-318.doi: 10.1016/j.freeradbiomed.2018.06.023 PMID: 29940353
  90. Sharma, M.; Hudson, J.B.; Adomat, H.; Guns, E.; Cox, M.E. In vitro anticancer activity of plant-derived cannabidiol on prostate cancer cell line. Pharmacol. Pharm., 2014, 5, 806-820.doi: 10.4236/pp.2014.58091
  91. Śledziński, P.; Zeyland, J.; Słomski, R.; Nowak, A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med., 2018, 7(3), 765-775.doi: 10.1002/cam4.1312 PMID: 29473338
  92. Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med., 2016, 16(1), 335.doi: 10.1186/s12906-016-1280-0 PMID: 27586579
  93. Kenyon, J.; Liu, W.; Dalgleish, A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer Res., 2018, 38(10), 5831-5835.doi: 10.21873/anticanres.12924 PMID: 30275207
  94. Naderi, J.; Dana, N.; Javanmard, S.H.; Amooheidari, A.; Yahay, M.; Vaseghi, G. Effects of standardized Cannabis sativa extract and ionizing radiation in melanoma cells in vitro. J. Cancer Res. Ther., 2019, Ahead of Print..
  95. Massi, P.; Solinas, M.; Cinquina, V.; Parolaro, D. Cannabidiol as potential anticancer drug. Br. J. Clin. Pharmacol., 2013, 75(2), 303-312.doi: 10.1111/j.1365-2125.2012.04298.x PMID: 22506672
  96. Shrivastava, A.; Kuzontkoski, P.M.; Groopman, J.E.; Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther., 2011, 10(7), 1161-1172.doi: 10.1158/1535-7163.MCT-10-1100 PMID: 21566064
  97. Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Di Marzo, V.; Izzo, A.A. Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J. Mol. Med. (Berl.), 2012, 90(8), 925-934.doi: 10.1007/s00109-011-0856-x PMID: 22231745
  98. Huang, Y.J.; Nan, G.X. Oxidative stress-induced angiogenesis. J. Clin. Neurosci., 2019, 63, 13-16.doi: 10.1016/j.jocn.2019.02.019 PMID: 30837109
  99. Sun, W. Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. J. Hematol. Oncol., 2012, 5(1), 63.doi: 10.1186/1756-8722-5-63 PMID: 23057939
  100. Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.doi: 10.3390/biomedicines5020034 PMID: 28635679
  101. Solinas, M.; Massi, P.; Cantelmo, A.R.; Cattaneo, M.G.; Cammarota, R.; Bartolini, D.; Cinquina, V.; Valenti, M.; Vicentini, L.M.; Noonan, D.M.; Albini, A.; Parolaro, D. Cannabidiol inhibits angiogenesis by multiple mechanisms. Br. J. Pharmacol., 2012, 167(6), 1218-1231.doi: 10.1111/j.1476-5381.2012.02050.x PMID: 22624859
  102. Romano, B.; Borrelli, F.; Pagano, E.; Cascio, M.G.; Pertwee, R.G.; Izzo, A.A. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine, 2014, 21(5), 631-639.doi: 10.1016/j.phymed.2013.11.006 PMID: 24373545
  103. Honarmand, M.; Namazi, F.; Mohammadi, A.; Nazifi, S. Can cannabidiol inhibit angiogenesis in colon cancer? Comp. Clin. Pathol., 2019, 28(1), 165-172.doi: 10.1007/s00580-018-2810-6
  104. Zeng, J.; Tang, Z.H.; Liu, S.; Guo, S.S. Clinicopathological significance of overexpression of interleukin-6 in colorectal cancer. World J. Gastroenterol., 2017, 23(10), 1780-1786.doi: 10.3748/wjg.v23.i10.1780 PMID: 28348483
  105. Gong, H.; Cheng, W.; Wang, Y. Tumor necrosis factor-related apoptosis-inducing ligand inhibits the growth and aggressiveness of colon carcinoma via the exogenous apoptosis signaling pathway. Exp. Ther. Med., 2019, 17(1), 41-50.PMID: 30651763
  106. de Miguel, D.; Lemke, J.; Anel, A.; Walczak, H.; Martinez-Lostao, L. Onto better TRAILs for cancer treatment. Cell Death Differ., 2016, 23(5), 733-747.doi: 10.1038/cdd.2015.174 PMID: 26943322
  107. Kim, J.L.; Kim, B.R.; Kim, D.Y.; Jeong, Y.A.; Jeong, S.; Na, Y.J.; Park, S.H.; Yun, H.K.; Jo, M.J.; Kim, B.G.; Kim, H.D.; Kim, D.H.; Oh, S.C.; Lee, S.I.; Lee, D.H. Cannabidiol enhances the therapeutic effects of TRAIL by upregulating DR5 in colorectal cancer. Cancers (Basel), 2019, 11(5), 642.doi: 10.3390/cancers11050642 PMID: 31075907
  108. Jeong, S.; Kim, B.G.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Park, S.H.; Na, Y.J.; Jo, M.J.; Yun, H.K.; Jeong, Y.A.; Kim, H.J.; Lee, S.I.; Kim, H.D.; Kim, D.H.; Oh, S.C.; Lee, D.H. Cannabidiol overcomes oxaliplatin resistance by enhancing NOS3- and SOD2-induced autophagy in human colorectal cancer cells. Cancers (Basel), 2019, 11(6), 781.doi: 10.3390/cancers11060781 PMID: 31195721
  109. Wang, J.; Cui, D.; Gu, S.; Chen, X.; Bi, Y.; Xiong, X.; Zhao, Y. Autophagy regulates apoptosis by targeting NOXA for degradation. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(8), 1105-1113.doi: 10.1016/j.bbamcr.2018.05.007 PMID: 29758299
  110. Banerjee, A.; Banerjee, V.; Czinn, S.; Blanchard, T. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells. Oncotarget, 2017, 8(16), 26142-26153.doi: 10.18632/oncotarget.15393 PMID: 28412728
  111. Bostad, M.; Olsen, C.E.; Peng, Q.; Berg, K.; Høgset, A.; Selbo, P.K. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy. J. Control. Release, 2015, 206, 37-48.doi: 10.1016/j.jconrel.2015.03.008 PMID: 25758331

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2021