Origanum syriacum Induces Apoptosis in Lung Cancer Cells by Altering the Ratio of Bax/Bcl2
- Авторлар: Yumrutas O.1, Yumrutas P.2, Pehlivan M.3, Korkmaz M.4, Kahraman D.5
-
Мекемелер:
- Department of Medical Biology, Faculty of Medicine, Adıyaman University
- Department of Respiratory Disease and Cancer Biology, Faculty of Medicine, Gaziantep University
- Department of Biology, Faculty of Science, Gaziantep University
- Department of Medical Biology, Faculty of Medicine, Gaziantep Islam Science and Technology University
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University
- Шығарылым: Том 25, № 11 (2025)
- Беттер: 741-749
- Бөлім: Chemistry
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694417
- DOI: https://doi.org/10.2174/0118715206333509241112060647
- ID: 694417
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:The lung cancer is the leading cause of death worldwide. Although methods such as surgery, chemotherapy, radiotherapy, and immunotherapy are used for treatment, these treatments are sometimes inadequate. In addition, the number of chemotherapeutic agents used is very limited, and it is very important to use new natural agents that can increase the effect of these methods used in treatment.
Objective:The present study was designed to determine the suppression of proliferation and induction of apoptosis activities and phenolic content of Origanum syriacum methanol extract (OsME) on lung cancer cells (A549).
Methods:For this purpose, the cell viability of A549 cells exposed to OsME was first determined. The morphological changes of the cell were observed by an inverted phase contrast microscope. Moreover, the percentage of apoptotic and necrotic cells was determined by FACS with AnnexinV/Propodium iodide staining. Additionally, proapoptotic Bax and antiapoptotic Bcl-2 mRNA levels were determined by Real-time PCR. Phenolic compounds of OsME were detected by LC-MS-MS.
Results:It was observed that the viability and proliferation of lung cancer cells decreased after the treatment of different concentrations of OsME. At a concentration of 200 mg/ml of OsME, most of the cell membrane structures were observed to disintegrate. Meanwhile, a 25 μg/ml concentration of OsME increased the Bax expression and percentage of late apoptotic cells. Vanillic acid and luteolin were identified as the main phenolic compounds of OsME.
Conclusion:OsME exhibited antiproliferation activity on A549 cells and induced apoptosis at low doses.
Негізгі сөздер
Авторлар туралы
Onder Yumrutas
Department of Medical Biology, Faculty of Medicine, Adıyaman University
Email: info@benthamscience.net
Pınar Yumrutas
Department of Respiratory Disease and Cancer Biology, Faculty of Medicine, Gaziantep University
Email: info@benthamscience.net
Mustafa Pehlivan
Department of Biology, Faculty of Science, Gaziantep University
Email: info@benthamscience.net
Murat Korkmaz
Department of Medical Biology, Faculty of Medicine, Gaziantep Islam Science and Technology University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Demet Kahraman
Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University
Email: info@benthamscience.net
Әдебиет тізімі
- Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: An epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113. doi: 10.3390/ijms141021087 PMID: 24152442
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin., 2024, 74(1), 12-49. doi: 10.3322/caac.21820 PMID: 38230766
- Cangır, A.K.; Yumuk, P.F.; Sak, S.D.; Akyürek, S.; Eralp, Y.; Yılmaz, Ü. Lung cancer in Turkey; Elsevier, 2022, pp. 1158-1170.
- Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1563-1579. doi: 10.1158/1055-9965.EPI-19-0221 PMID: 31575553
- Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell, 2002, 1(1), 49-52. doi: 10.1016/S1535-6108(02)00027-2 PMID: 12086887
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300. doi: 10.21037/tlcr.2016.06.07 PMID: 27413711
- Hoy, H.; Lynch, T.; Beck, M. Surgical treatment of lung cancer. Crit. Care Nursing Clin., 2019, 31(3), 303-313. PMID: 31351552
- Islam, K.M.; Anggondowati, T.; Deviany, P.E.; Ryan, J.E.; Fetrick, A.; Bagenda, D.; Copur, M.S.; Tolentino, A.; Vaziri, I.; McKean, H.A.; Dunder, S.; Gray, J.E.; Huang, C.; Ganti, A.K. Patient preferences of chemotherapy treatment options and tolerance of chemotherapy side effects in advanced stage lung cancer. BMC Cancer, 2019, 19(1), 835. doi: 10.1186/s12885-019-6054-x PMID: 31455252
- Kim, E.S. Chemotherapy resistance in lung cancer. Adv. Exp. Med. Biol., 2016, 893, 189-209. doi: 10.1007/978-3-319-24223-1_10
- Phenolic compounds that modulate multi drug resistance through inhibiting of P-glycoprotein encoded by gene ABCB1 Eurasian J Bio Chem Sci, 2022, 5(Ek sayı 1), 162-165.
- Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 2018, 32(8), 1425-1449. doi: 10.1002/ptr.6087 PMID: 29672977
- Sharifi-Rad, M.; B Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; Iqbal, M.; Imran, M.; Sen, S.; Acharya, K.; Dey, A; Sharifi-Rad, J. Phytochemical constituents, biological activities, and health‐promoting effects of the genus Origanum. Phytother. Res., 2021, 35(1), 95-121. doi: 10.1002/ptr.6785 PMID: 32789910
- Marrelli, M.; Statti, G.A.; Conforti, F. Origanum spp.: An update of their chemical and biological profiles. Phytochem. Rev., 2018, 17(4), 873-888. doi: 10.1007/s11101-018-9566-0
- Emire, Z.; Yabalak, E. Can Origanum be a hope for cancer treatment? A review on the potential of Origanum species in preventing and treating cancers. Int. J. Environ. Health Res., 2023, 33(9), 894-910. doi: 10.1080/09603123.2022.2064437 PMID: 35414316
- Yarlılar, Ş.G.; Yabalak, E.; Yetkin, D.; Gizir, A.M.; Mazmancı, B. Anticancer potential of Origanum munzurense extract against MCF-7 breast cancer cell. Int. J. Environ. Health Res., 2023, 33(6), 600-608. doi: 10.1080/09603123.2022.2042495 PMID: 35188839
- Yumrutaş, Ö; Yumrutas, P; Pehlivan, M; Kahraman, D; Korkmaz, M; Doğan, M. Anticancer activity of Origanum vulgare on lung cancer: Antiproliferative, morphological, and apoptotic effects IJNPR, 2024, 15(3), 357-363.
- Benslama, A.; Daci, S.; Nabti, L.Z.; Bendif, H.; Harrar, A. Assessment of polyphenols contents, antibacterial and antioxidant activities of Origanum majorana extracts. Eur. J. Biol. Res., 2021, 11(4), 509-518.
- Elshafie, H.S.; Mancini, E.; Sakr, S.; De Martino, L.; Mattia, C.A.; De Feo, V.; Camele, I. Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit. J. Med. Food, 2015, 18(8), 929-934. doi: 10.1089/jmf.2014.0167 PMID: 25599273
- Han, X.; Parker, T.L. Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano (Origanum vulgare) essential oil in a human skin disease model. Biochim. Open, 2017, 4, 73-77. doi: 10.1016/j.biopen.2017.02.005 PMID: 29450144
- Mesmar, J.; Abdallah, R.; Badran, A.; Maresca, M.; Baydoun, E. Origanum syriacum phytochemistry and pharmacological properties: A comprehensive review. Molecules, 2022, 27(13), 4272. doi: 10.3390/molecules27134272 PMID: 35807517
- Farhat, M.; Tóth, J.; Héthelyi, B.; Szarka, S.; Czigle, S. Analysis of the essential oil compounds of Origanum syriacum L. Eur. Pharm. J., 2012, 59(2), 6-14.
- AlKahlout, A.; Fardoun, M.; Mesmar, J.; Abdallah, R.; Badran, A.; Nasser, S.A.; Baydoun, S.; Kobeissy, F.; Shaito, A.; Iratni, R.; Muhammad, K.; Baydoun, E.; Eid, A.H. Origanum syriacum L. Attenuates the malignant phenotype of MDA-mb231 breast cancer cells. Front. Oncol., 2022, 12, 922196. doi: 10.3389/fonc.2022.922196 PMID: 35847867
- Mesmar, J.; Abdallah, R.; Hamade, K.; Baydoun, S.; Al-Thani, N.; Shaito, A.; Maresca, M.; Badran, A.; Baydoun, E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front. Pharmacol., 2022, 13, 994025. doi: 10.3389/fphar.2022.994025 PMID: 36299882
- Aldisi, S.S.; Jaganjac, M.; Eid, A.H.; Goktepe, I. Evaluation of apoptotic, antiproliferative, and antimigratory activity of Origanum syriacum against metastatic colon cancer cells. J. Herbs Spices Med. Plants, 2019, 25(3), 202-217. doi: 10.1080/10496475.2019.1587674
- Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651. doi: 10.1016/j.biopha.2018.04.113 PMID: 29864953
- Yumrutas, O.; Bozgeyik, I. Anticancer activity of Inula graveolensby induction of ROS-independent apoptosis and suppression of IL6-IL8 in cervical cancer cells. Bol. Latinoam. Caribe Plantas Med. Aromat., 2023, 22(3), 314-325. doi: 10.37360/blacpma.23.22.3.23
- Cocelli, G.; Pehlivan, M.; Yumrutas, O.; Bonfante, R.; Parlar, A. Sideritis perfoliata inhibits cell proliferation, induces apoptosis and exhibits cellular antioxidant activity in cervical cancer cells. Bol. Latinoam. Caribe Plantas Med. Aromat., 2021, 20(4), 394-405. doi: 10.37360/blacpma.21.20.4.29
- Al-Kalaldeh, J.Z.; Abu-Dahab, R.; Afifi, F.U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr. Res., 2010, 30(4), 271-278. doi: 10.1016/j.nutres.2010.04.001 PMID: 20534330
- Esawy, S.H.; El-Hadidy, E.M.; Abdel-Salam, M. Antioxidant content and cytotoxicity of Origanum syriacum L. Adv. Food Sci., 2014, 36(2), 58-64.
- Letai, A. Apoptosis and cancer. Annu. Rev. Cancer Biol., 2017, 1(1), 275-294. doi: 10.1146/annurev-cancerbio-050216-121933
- Segawa, K.; Nagata, S. An apoptotic ‘eat me’ signal: Phosphatidylserine exposure. Trends Cell Biol., 2015, 25(11), 639-650. doi: 10.1016/j.tcb.2015.08.003 PMID: 26437594
- Krysko, D.V.; Vanden Berghe, T.; D’Herde, K.; Vandenabeele, P. Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods, 2008, 44(3), 205-221. doi: 10.1016/j.ymeth.2007.12.001 PMID: 18314051
- Zhou, H.; Liu, L.; Ma, X.; Wang, J.; Yang, J.; Zhou, X.; Yang, Y.; Liu, H. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol. Cell. Biochem., 2021, 476(2), 1233-1243. doi: 10.1007/s11010-020-03985-3 PMID: 33247805
- Velli, S.; Sundaram, J.; Murugan, M.; Balaraman, G.; Thiruvengadam, D. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice. J. Biochem. Mol. Toxicol., 2019, 33(10), e22382. doi: 10.1002/jbt.22382 PMID: 31468657
- Mojibi, R.; Mehrzad, J.; Sharifzadeh, A.; Nikaein, D. Apoptotic effects of caffeic acid phenethyl ester and matricaria chamomilla essential oil on A549 non-small cell lung cancer cells. Iran. J. Vet. Med., 2022, 16(4)
- Vejselova, D.; Kutlu, H.M. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turk. J. Biol., 2015, 39(1), 1-5. doi: 10.3906/biy-1401-7
- Chen, Q.; Liu, S.; Chen, J.; Zhang, Q.; Lin, S.; Chen, Z. Luteolin induces mitochondria-dependent apoptosis in human lung adenocarcinoma cell. Nat. Prod. Commun., 2012, 7(1), 29-32. doi: 10.1177/1934578X1200700111
- Wang, X.; Wang, D.; Zhao, Y. Effect and mechanism of resveratrol on the apoptosis of lung adenocarcinoma cell line A549. Cell Biochem. Biophys., 2015, 73(2), 527-531. doi: 10.1007/s12013-015-0696-3 PMID: 27352348
- Mukherjee, A.; Khuda-Bukhsh, A.R. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J. Pharmacopuncture, 2015, 18(1), 19-26. doi: 10.3831/KPI.2015.18.002 PMID: 25830055
- Min, J.; Shen, H.; Xi, W.; Wang, Q.; Yin, L.; Zhang, Y.; Yu, Y.; Yang, Q.; Wang, Z. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell. Physiol. Biochem., 2018, 48(4), 1433-1442. doi: 10.1159/000492253 PMID: 30064123
- Kleczka, A.; Kubina, R.; Dzik, R.; Jasik, K.; Stojko, J.; Cholewa, K.; Kabała-Dzik, A. Caffeic acid phenethyl ester (CAPE) induced apoptosis in serous ovarian cancer OV7 cells by deregulation of BCL2/BAX genes. Molecules, 2020, 25(15), 3514. doi: 10.3390/molecules25153514 PMID: 32752091
- Venkidasamy, B.; Subramanian, U.; Almoallim, H.S.; Alharbi, S.A.; Lakshmikumar, R.R.C.; Thiruvengadam, M. Vanillic acid nanocomposite: Synthesis, characterization analysis, antimicrobial, and anticancer potentials. Molecules, 2024, 29(13), 3098. doi: 10.3390/molecules29133098 PMID: 38999050
- Park, J.; Cho, S.Y.; Kang, J.; Park, W.Y.; Lee, S.; Jung, Y.; Kang, M.W.; Kwak, H.J.; Um, J.Y. Vanillic acid improves comorbidity of cancer and obesity through stat3 regulation in high-fat-diet-induced obese and b16bl6 melanoma-injected mice. Biomolecules, 2020, 10(8), 1098. doi: 10.3390/biom10081098 PMID: 32722030
- Kim, K.M.; Song, J.J.; An, J.Y.; Kwon, Y.T.; Lee, Y.J. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression. J. Biol. Chem., 2005, 280(49), 41047-41056. doi: 10.1074/jbc.M503713200 PMID: 16199534
- Xu, Q.B.; Chen, X.F.; Feng, J.; Miao, J.F.; Liu, J.; Liu, F.T.; Niu, B.X.; Cai, J.Y.; Huang, C.; Zhang, Y.; Ling, Y. Design, synthesis and biological evaluation of hybrids of β-carboline and salicylic acid as potential anticancer and apoptosis inducing agents. Sci. Rep., 2016, 6(1), 36238. doi: 10.1038/srep36238 PMID: 27824091
- Cai, X.; Ye, T.; Liu, C.; Lu, W.; Lu, M.; Zhang, J.; Wang, M.; Cao, P. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol. In Vitro, 2011, 25(7), 1385-1391. doi: 10.1016/j.tiv.2011.05.009 PMID: 21601631
- Meng, G.; Chai, K.; Li, X.; Zhu, Y.; Huang, W. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway. Chem. Biol. Interact., 2016, 257, 26-34. doi: 10.1016/j.cbi.2016.07.028 PMID: 27474067
- Alam, S.; Mohammad, T.; Padder, R.A.; Hassan, M.I.; Husain, M. Thymoquinone and quercetin induce enhanced apoptosis in non‐small cell lung cancer in combination through the Bax/Bcl2 cascade. J. Cell. Biochem., 2022, 123(2), 259-274. doi: 10.1002/jcb.30162 PMID: 34636440
- Kim, Y.A.; Lee, W.H.; Choi, T.H.; Rhee, S-H.; Park, K-Y.; Choi, Y.H. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol., 2003, 23(4), 1143-1149. PMID: 12963997
- Ma, L.; Li, W.; Wang, R.; Nan, Y.; Wang, Q.; Liu, W.; Jin, F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int. J. Oncol., 2015, 47(4), 1460-1468. doi: 10.3892/ijo.2015.3124 PMID: 26314326
- Zhang, Y.X.; Yu, P.F.; Gao, Z.M.; Yuan, J.; Zhang, Z. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(7), 1665-1671. PMID: 28429338
- Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, A.; Grzanka, D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem., 2017, 119(2), 99-112. doi: 10.1016/j.acthis.2016.11.003 PMID: 27887793
Қосымша файлдар
