Fragment-based Drug Discovery Successful Contributions to Current Pharmacotherapeutic Agents Arsenal against Aggressive Cancers: A Mini-Review
- Autores: Santos L.1, da Silveira N.2
-
Afiliações:
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry,, Federal University of Alfenas / UNIFAL-MG
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG
- Edição: Volume 23, Nº 16 (2023)
- Páginas: 1796-1810
- Seção: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694353
- DOI: https://doi.org/10.2174/1871520623666230714163823
- ID: 694353
Citar
Texto integral
Resumo
After a decade of approval of the drug vemurafenib in 2011, the hopeless scenario imposed by some severe cancer types has been mitigated by the magic bullets developed through fragment-based drug discovery. Moreover, this recent approach to medicinal chemistry has been successfully practiced by academic laboratories and pharmaceutical industry workflows focused on drug design with an enhanced profile for chemotherapy of aggressive tumors. This mini-review highlights the successes achieved by these research campaigns in the fruitful field of the molecular fragment paradigm that resulted in the approval of six new anticancer drugs in the last decade (2011-2021), as well as several promising clinical candidates. It is a particularly encouraging opportunity for other researchers who want to become aware of the applicability and potency of this new paradigm applied to the design and development of powerful molecular weapons in the constant war against these merciless scourges of humanity.
Sobre autores
Leandro Santos
Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry,, Federal University of Alfenas / UNIFAL-MG
Autor responsável pela correspondência
Email: info@benthamscience.net
Nelson da Silveira
Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG
Email: info@benthamscience.net
Bibliografia
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Ugai, T.; Sasamoto, N.; Lee, H.Y.; Ando, M.; Song, M.; Tamimi, R.M.; Kawachi, I.; Campbell, P.T.; Giovannucci, E.L.; Weiderpass, E.; Rebbeck, T.R.; Ogino, S. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat. Rev. Clin. Oncol., 2022, 19(10), 656-673. doi: 10.1038/s41571-022-00672-8 PMID: 36068272
- Chen, W.; Sun, Z.; Lu, L. Targeted engineering of medicinal chemistry for cancer therapy: Recent advances and perspectives. Angew. Chem. Int. Ed., 2021, 60(11), 5626-5643. doi: 10.1002/anie.201914511 PMID: 32096328
- Stine, Z.E.; Schug, Z.T.; Salvino, J.M.; Dang, C.V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov., 2022, 21(2), 141-162. doi: 10.1038/s41573-021-00339-6 PMID: 34862480
- Pedreira, J.G.B.; Franco, L.S.; Barreiro, E.J. Chemical intuition in drug design and discovery. Curr. Top. Med. Chem., 2019, 19(19), 1679-1693. doi: 10.2174/1568026619666190620144142 PMID: 31258088
- Fischer, E. Einfluss der configuration auf die wirkung der enzima. Ber. Dtsch. Chem. Ges., 1894, 27(3), 2985-2993. doi: 10.1002/cber.18940270364
- Ehrlich, P. Chemotherapeutics: Scientific principles, methods and results. Lancet, 1913, 182, 445-451. doi: 10.1016/S0140-6736(01)38705-6
- Li, Q.; Kang, C. Perspectives on fragment-based drug discovery: A strategy applicable to diverse targets. Curr. Top. Med. Chem., 2021, 21(13), 1099-1112. doi: 10.2174/1568026621666210804115700 PMID: 34348623
- Bon, M.; Bilsland, A.; Bower, J.; McAulay, K. Fragment‐based drug discoverythe importance of high‐quality molecule libraries. Mol. Oncol., 2022, 16(21), 3761-3777. doi: 10.1002/1878-0261.13277 PMID: 35749608
- de Esch, I.J.P.; Erlanson, D.A.; Jahnke, W.; Johnson, C.N.; Walsh, L. Fragment-to-lead medicinal chemistry publications in 2020. J. Med. Chem., 2022, 65(1), 84-99. doi: 10.1021/acs.jmedchem.1c01803 PMID: 34928151
- Erlanson, D. Practical fragments. Available From: https://practicalfragments.blogspot.com/2022/11/fragments-in-clinic-2022-edition.html (accessed December 20, 2022).
- Rapp, U.R.; Goldsborough, M.D.; Mark, G.E.; Bonner, T.I.; Groffen, J.; Reynolds, F.H., Jr; Stephenson, J.R. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. USA, 1983, 80(14), 4218-4222.https://www.pnas.org/doi/pdf/10.1073/pnas.80.14.4218 doi: 10.1073/pnas.80.14.4218 PMID: 6308607
- Beck, T.W.; Huleihel, M.; Gunnell, M.; Bonner, T.I.; Rapp, U.R. The complete coding sequence of the human A- raf -1 oncogene and transforming activity of a human A- raf carrying retrovirus. Nucleic Acids Res., 1987, 15(2), 595-609. doi: 10.1093/nar/15.2.595 PMID: 3029685
- Ikawa, S.; Fukui, M.; Ueyama, Y.; Tamaoki, N.; Yamamoto, T.; Toyoshima, K. B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol. Cell. Biol., 1988, 8(6), 2651-2654. doi: 10.1128/mcb.8.6.2651-2654.1988 PMID: 3043188
- Holderfield, M.; Deuker, M.M.; McCormick, F.; McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer, 2014, 14(7), 455-467. doi: 10.1038/nrc3760 PMID: 24957944
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954. doi: 10.1038/nature00766 PMID: 12068308
- Schirripa, M.; Biason, P.; Lonardi, S.; Pella, N.; Pino, M.S.; Urbano, F.; Antoniotti, C.; Cremolini, C.; Corallo, S.; Pietrantonio, F.; Gelsomino, F.; Cascinu, S.; Orlandi, A.; Munari, G.; Malapelle, U.; Saggio, S.; Fontanini, G.; Rugge, M.; Mescoli, C.; Lazzi, S.; Reggiani Bonetti, L.; Lanza, G.; Dei Tos, A.P.; De Maglio, G.; Martini, M.; Bergamo, F.; Zagonel, V.; Loupakis, F.; Fassan, M. Class 1, 2, and 3 BRAF-mutated metastatic colorectal cancer: A detailed clinical, pathologic, and molecular characterization. Clin. Cancer Res., 2019, 25(13), 3954-3961. doi: 10.1158/1078-0432.CCR-19-0311 PMID: 30967421
- Śmiech, M.; Leszczyński, P.; Kono, H.; Wardell, C.; Taniguchi, H. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks. Genes, 2020, 11(11), 1342. doi: 10.3390/genes11111342 PMID: 33198372
- Ko, J.S. The immunology of melanoma. Clin. Lab. Med., 2017, 37(3), 449-471. doi: 10.1016/j.cll.2017.06.001 PMID: 28802495
- Kumar, A.; Mandiyan, V.; Suzuki, Y.; Zhang, C.; Rice, J.; Tsai, J.; Artis, D.R.; Ibrahim, P.; Bremer, R. Crystal structures of proto-oncogene kinase Pim1: A target of aberrant somatic hypermutations in diffuse large cell lymphoma. J. Mol. Biol., 2005, 348(1), 183-193. doi: 10.1016/j.jmb.2005.02.039 PMID: 15808862
- Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.; Suzuki, Y.; Luu, C.; Settachatgul, C.; Shellooe, R.; Cantwell, J.; Kim, S.H.; Schlessinger, J.; Zhang, K.Y.J.; West, B.L.; Powell, B.; Habets, G.; Zhang, C.; Ibrahim, P.N.; Hirth, P.; Artis, D.R.; Herlyn, M.; Bollag, G. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 3041-3046. doi: 10.1073/pnas.0711741105 PMID: 18287029
- Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.A.; Wong, B.; Tsang, G.; West, B.L.; Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K.Y.J.; Artis, D.R.; Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D'Andrea, K.; Koehler, A.; Stumm, M.; Lin, P.S.; Lee, R.J.; Grippo, J.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; Chapman, P.B.; Flaherty, K.T.; Xu, X.; Nathanson, K.L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467(7315), 596-599. doi: 10.1038/nature09454 PMID: 20823850
- Flaherty, K.T.; Yasothan, U.; Kirkpatrick, P. Vemurafenib. Nat. Rev. Drug Discov., 2011, 10(11), 811-812. doi: 10.1038/nrd3579 PMID: 22037033
- Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov., 2012, 11(11), 873-886. doi: 10.1038/nrd3847 PMID: 23060265
- Brown, D.G.; Wobst, H.J. A decade of FDA-approved drugs (2010-2019): Trends and future directions. J. Med. Chem., 2021, 64(5), 2312-2338. doi: 10.1021/acs.jmedchem.0c01516 PMID: 33617254
- Muchmore, S.W.; Sattler, M.; Liang, H.; Meadows, R.P.; Harlan, J.E.; Yoon, H.S.; Nettesheim, D.; Chang, B.S.; Thompson, C.B.; Wong, S.L.; Ng, S.C.; Fesik, S.W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature, 1996, 381(6580), 335-341. doi: 10.1038/381335a0 PMID: 8692274
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O'Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681. doi: 10.1038/nature03579 PMID: 15902208
- Shoemaker, A.R.; Oleksijew, A.; Bauch, J.; Belli, B.A.; Borre, T.; Bruncko, M.; Deckwirth, T.; Frost, D.J.; Jarvis, K.; Joseph, M.K.; Marsh, K.; McClellan, W.; Nellans, H.; Ng, S.; Nimmer, P.; O'Connor, J.M.; Oltersdorf, T.; Qing, W.; Shen, W.; Stavropoulos, J.; Tahir, S.K.; Wang, B.; Warner, R.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H.; Elmore, S.W. A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res., 2006, 66(17), 8731-8739. doi: 10.1158/0008-5472.CAN-06-0367 PMID: 16951189
- Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428. doi: 10.1158/0008-5472.CAN-07-5836 PMID: 18451170
- Ackler, S.; Xiao, Y.; Mitten, M.J.; Foster, K.; Oleksijew, A.; Refici, M.; Schlessinger, S.; Wang, B.; Chemburkar, S.R.; Bauch, J.; Tse, C.; Frost, D.J.; Fesik, S.W.; Rosenberg, S.H.; Elmore, S.W.; Shoemaker, A.R. ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo. Mol. Cancer Ther., 2008, 7(10), 3265-3274. doi: 10.1158/1535-7163.MCT-08-0268 PMID: 18852130
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208. doi: 10.1038/nm.3048 PMID: 23291630
- Cang, S.; Iragavarapu, C.; Savooji, J.; Song, Y.; Liu, D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J. Hematol. Oncol., 2015, 8(1), 129. doi: 10.1186/s13045-015-0224-3 PMID: 26589495
- Leverson, J.D.; Sampath, D.; Souers, A.J.; Rosenberg, S.H.; Fairbrother, W.J.; Amiot, M.; Konopleva, M.; Letai, A. Found in translation: How preclinical research is guiding the clinical development of the BCL2-selective inhibitor venetoclax. Cancer Discov., 2017, 7(12), 1376-1393. doi: 10.1158/2159-8290.CD-17-0797 PMID: 29146569
- Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: The impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619. doi: 10.1038/nrd.2016.109 PMID: 27417849
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 325. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
- Siefker-Radtke, A.O.; Necchi, A.; Park, S.H.; García-Donas, J.; Huddart, R.A.; Burgess, E.F.; Fleming, M.T.; Rezazadeh Kalebasty, A.; Mellado, B.; Varlamov, S.; Joshi, M.; Duran, I.; Tagawa, S.T.; Zakharia, Y.; Akapame, S.; Santiago-Walker, A.E.; Monga, M.; O'Hagan, A.; Loriot, Y.; Necchi, A.; Loriot, Y.; Park, S.H.; Tagawa, S.; Flechon, A.; Alexeev, B.; Varlamov, S.; Huddart, R.; Burgess, E.; Rezazadeh, A.; Siefker-Radtke, A.; Vano, Y.; Gasparro, D.; Hamzaj, A.; Kopyltsov, E.; Gracia Donas, J.; Mellado, B.; Parikh, O.; Schatteman, P.; Culine, S.; Houédé, N.; Zanetta, S.; Facchini, G.; Scagliotti, G.; Schinzari, G.; Lee, J.L.; Shkolnik, M.; Fleming, M.; Joshi, M.; O'Donnell, P.; Stöger, H.; Decaestecker, K.; Dirix, L.; Machiels, J.P.; Borchiellini, D.; Delva, R.; Rolland, F.; Hadaschik, B.; Retz, M.; Rosenbaum, E.; Basso, U.; Mosca, A.; Lee, H.J.; Shin, D.B.; Cebotaru, C.; Duran, I.; Moreno, V.; Perez Gracia, J.L.; Pinto, A.; Su, W-P.; Wang, S-S.; Hainsworth, J.; Schnadig, I.; Srinivas, S.; Vogelzang, N.; Loidl, W.; Meran, J.; Gross Goupil, M.; Joly, F.; Imkamp, F.; Klotz, T.; Krege, S.; May, M.; Schultze-Seemann, W.; Strauss, A.; Zimmermann, U.; Keizman, D.; Peer, A.; Sella, A.; Berardi, R.; De Giorgi, U.; Sternberg, C.N.; Rha, S.Y.; Bulat, I.; Izmailov, A.; Matveev, V.; Vladimirov, V.; Carles, J.; Font, A.; Saez, M.; Syndikus, I.; Tarver, K.; Appleman, L.; Burke, J.; Dawson, N.; Jain, S.; Zakharia, Y. Efficacy and safety of erdafitinib in patients with locally advanced or metastatic urothelial carcinoma: long-term follow-up of a phase 2 study. Lancet Oncol., 2022, 23(2), 248-258. doi: 10.1016/S1470-2045(21)00660-4 PMID: 35030333
- Krook, M.A.; Reeser, J.W.; Ernst, G.; Barker, H.; Wilberding, M.; Li, G.; Chen, H.Z.; Roychowdhury, S. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer, 2021, 124(5), 880-892. doi: 10.1038/s41416-020-01157-0 PMID: 33268819
- Peng, J.; Sridhar, S.; Siefker-Radtke, A.O.; Selvarajah, S.; Jiang, D.M. Targeting the FGFR pathway in urothelial carcinoma: The future is now. Curr. Treat. Options Oncol., 2022, 23(9), 1269-1287. doi: 10.1007/s11864-022-01009-4 PMID: 35962938
- Squires, M.; Ward, G.; Saxty, G.; Berdini, V.; Cleasby, A.; King, P.; Angibaud, P.; Perera, T.; Fazal, L.; Ross, D.; Jones, C.G.; Madin, A.; Benning, R.K.; Vickerstaffe, E.; O'Brien, A.; Frederickson, M.; Reader, M.; Hamlett, C.; Batey, M.A.; Rich, S.; Carr, M.; Miller, D.; Feltell, R.; Thiru, A.; Bethell, S.; Devine, L.A.; Graham, B.L.; Pike, A.; Cosme, J.; Lewis, E.J.; Freyne, E.; Lyons, J.; Irving, J.; Murray, C.; Newell, D.R.; Thompson, N.T. Potent, selective inhibitors of fibroblast growth factor receptor define fibroblast growth factor dependence in preclinical cancer models. Mol. Cancer Ther., 2011, 10(9), 1542-1552. doi: 10.1158/1535-7163.MCT-11-0426 PMID: 21764904
- Murray, C.W.; Newell, D.R.; Angibaud, P. A successful collaboration between academia, biotech and pharma led to discovery of erdafitinib, a selective FGFR inhibitor recently approved by the FDA. MedChemComm, 2019, 10(9), 1509-1511. doi: 10.1039/C9MD90044F
- El Newahie, A.M.S.; Ismail, N.S.M.; Abou El Ella, D.A.; Abouzid, K.A.M. Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity: Quinoxaline-based scaffolds targeting tyrosine kinases. Arch. Pharm., 2016, 349(5), 309-326. doi: 10.1002/ardp.201500468 PMID: 27062086
- Kumar, V.; Kaur, N.; Sahu, S. Role of tyrosine kinases and their inhibitors in cancer therapy: A comprehensive review. Curr. Med. Chem., 2022, 30(13), 1464-1481. doi: 10.2174/0929867329666220727122952
- Rees, D.C. Medicines for millions of patients. RSC Med. Chem., 2022, 13(1), 7-12. doi: 10.1039/D1MD00279A PMID: 35211673
- Nishina, T.; Takahashi, S.; Iwasawa, R.; Noguchi, H.; Aoki, M.; Doi, T. Safety, pharmacokinetic, and pharmacodynamics of erdafitinib, a pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor, in patients with advanced or refractory solid tumors. Invest. New Drugs, 2018, 36(3), 424-434. doi: 10.1007/s10637-017-0514-4 PMID: 28965185
- Perera, T.P.S.; Jovcheva, E.; Mevellec, L.; Vialard, J.; De Lange, D.; Verhulst, T.; Paulussen, C.; Van De Ven, K.; King, P.; Freyne, E.; Rees, D.C.; Squires, M.; Saxty, G.; Page, M.; Murray, C.W.; Gilissen, R.; Ward, G.; Thompson, N.T.; Newell, D.R.; Cheng, N.; Xie, L.; Yang, J.; Platero, S.J.; Karkera, J.D.; Moy, C.; Angibaud, P.; Laquerre, S.; Lorenzi, M.V. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol. Cancer Ther., 2017, 16(6), 1010-1020. doi: 10.1158/1535-7163.MCT-16-0589 PMID: 28341788
- Bansal, P.; Dwivedi, D.K.; Hatwal, D.; Sharma, P.; Gupta, V.; Goyal, S.; Maithani, M. Erdafitinib as a novel and advanced treatment strategy of metastatic urothelial carcinoma. Anticancer. Agents Med. Chem., 2021, 21(18), 2478-2486. doi: 10.2174/1871520621666210121093852 PMID: 33475078
- Spierenburg, G.; van der Heijden, L.; van Langevelde, K.; Szuhai, K.; Bovée, J.V.G.M.; van de Sande, M.A.J.; Gelderblom, H. Tenosynovial giant cell tumors (TGCT): Molecular biology, drug targets and non-surgical pharmacological approaches. Expert Opin. Ther. Targets, 2022, 26(4), 333-345. doi: 10.1080/14728222.2022.2067040 PMID: 35443852
- Dupont, C.A.; Riegel, K.; Pompaiah, M.; Juhl, H.; Rajalingam, K. Druggable genome and precision medicine in cancer: current challenges. FEBS J., 2021, 288(21), 6142-6158. doi: 10.1111/febs.15788 PMID: 33626231
- Wen, J.; Wang, S.; Guo, R.; Liu, D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur. J. Med. Chem., 2023, 245(Pt 1), 114884. doi: 10.1016/j.ejmech.2022.114884 PMID: 36335744
- Palmerini, E.; Staals, E.L. Treatment updates on tenosynovial giant cell tumor. Curr. Opin. Oncol., 2022, 34(4), 322-327. doi: 10.1097/CCO.0000000000000853 PMID: 35837703
- Zhang, C.; Ibrahim, P.N.; Zhang, J.; Burton, E.A.; Habets, G.; Zhang, Y.; Powell, B.; West, B.L.; Matusow, B.; Tsang, G.; Shellooe, R.; Carias, H.; Nguyen, H.; Marimuthu, A.; Zhang, K.Y.J.; Oh, A.; Bremer, R.; Hurt, C.R.; Artis, D.R.; Wu, G.; Nespi, M.; Spevak, W.; Lin, P.; Nolop, K.; Hirth, P.; Tesch, G.H.; Bollag, G. Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Proc. Natl. Acad. Sci. USA, 2013, 110(14), 5689-5694. doi: 10.1073/pnas.1219457110 PMID: 23493555
- Tap, W.D.; Wainberg, Z.A.; Anthony, S.P.; Ibrahim, P.N.; Zhang, C.; Healey, J.H.; Chmielowski, B.; Staddon, A.P.; Cohn, A.L.; Shapiro, G.I.; Keedy, V.L.; Singh, A.S.; Puzanov, I.; Kwak, E.L.; Wagner, A.J.; Von Hoff, D.D.; Weiss, G.J.; Ramanathan, R.K.; Zhang, J.; Habets, G.; Zhang, Y.; Burton, E.A.; Visor, G.; Sanftner, L.; Severson, P.; Nguyen, H.; Kim, M.J.; Marimuthu, A.; Tsang, G.; Shellooe, R.; Gee, C.; West, B.L.; Hirth, P.; Nolop, K.; van de Rijn, M.; Hsu, H.H.; Peterfy, C.; Lin, P.S.; Tong-Starksen, S.; Bollag, G. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med., 2015, 373(5), 428-437. doi: 10.1056/NEJMoa1411366 PMID: 26222558
- Alsayadi, Y.M.M.A.; Chawla, P.A. Prospects of treating tenosynovial giant cell tumor through pexidartinib: A review. Anticancer. Agents Med. Chem., 2021, 21(12), 1510-1519. doi: 10.2174/1871520620999201102123555 PMID: 33143617
- Benner, B.; Good, L.; Quiroga, D.; Schultz, T.E.; Kassem, M.; Carson, W.E.; Cherian, M.A.; Sardesai, S.; Wesolowski, R. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: A systematic review of pre-clinical and clinical development. Drug Des. Devel. Ther., 2020, 14, 1693-1704. doi: 10.2147/DDDT.S253232 PMID: 32440095
- Liang, X.; Wu, P.; Yang, Q.; Xie, Y.; He, C.; Yin, L.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur. J. Med. Chem., 2021, 220, 113473. doi: 10.1016/j.ejmech.2021.113473 PMID: 33906047
- Rio-Vilariño, A.; del Puerto-Nevado, L.; García-Foncillas, J.; Cebrián, A. Ras family of small GTPases in CRC: New perspectives for overcoming drug resistance. Cancers (Basel), 2021, 13(15), 3757. doi: 10.3390/cancers13153757 PMID: 34359657
- Sheffels, E.; Kortum, R.L. The role of wild-type RAS in oncogenic RAS transformation. Genes, 2021, 12(5), 662. doi: 10.3390/genes12050662
- Erlanson, D.A.; Webster, K.R. Targeting mutant KRAS. Curr. Opin. Chem. Biol., 2021, 62, 101-108. doi: 10.1016/j.cbpa.2021.02.010 PMID: 33838397
- Li, H-Y.; Qi, W-L.; Wang, Y-X. Covalent inhibitor targets KRasG12C: A new paradigm for drugging the undruggable and challenges ahead. Genes Dis., 2021. Epub ahead of print doi: 10.1016/j.gendis.2021.08.011
- Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551. doi: 10.1038/nature12796 PMID: 24256730
- Janes, M.R.; Zhang, J.; Li, L.S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell, 2018, 172(3), 578-589.e17. doi: 10.1016/j.cell.2018.01.006 PMID: 29373830
- Shin, Y.; Jeong, J.W.; Wurz, R.P.; Achanta, P.; Arvedson, T.; Bartberger, M.D.; Campuzano, I.D.G.; Fucini, R.; Hansen, S.K.; Ingersoll, J.; Iwig, J.S.; Lipford, J.R.; Ma, V.; Kopecky, D.J.; McCarter, J.; San Miguel, T.; Mohr, C.; Sabet, S.; Saiki, A.Y.; Sawayama, A.; Sethofer, S.; Tegley, C.M.; Volak, L.P.; Yang, K.; Lanman, B.A.; Erlanson, D.A.; Cee, V.J. Discovery of N -(1-Acryloylazetidin-3-yl)-2-(1 H -indol-1-yl)acetamides as Covalent Inhibitors of KRAS G12C. ACS Med. Chem. Lett., 2019, 10(9), 1302-1308. doi: 10.1021/acsmedchemlett.9b00258 PMID: 31531201
- Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.; Goodman, G.; Kopecky, D.J.; Liu, L.; Lopez, P.; Low, J.D.; Ma, V.; Minatti, A.E.; Nguyen, T.T.; Nishimura, N.; Pickrell, A.J.; Reed, A.B.; Shin, Y.; Siegmund, A.C.; Tamayo, N.A.; Tegley, C.M.; Walton, M.C.; Wang, H.L.; Wurz, R.P.; Xue, M.; Yang, K.C.; Achanta, P.; Bartberger, M.D.; Canon, J.; Hollis, L.S.; McCarter, J.D.; Mohr, C.; Rex, K.; Saiki, A.Y.; San, M.T.; Volak, L.P.; Wang, K.H.; Whittington, D.A.; Zech, S.G.; Lipford, J.R.; Cee, V.J. Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. J. Med. Chem., 2020, 63(1), 52-65. doi: 10.1021/acs.jmedchem.9b01180 PMID: 31820981
- Blair, H.A. Sotorasib: First Approval. Drugs, 2021, 81(13), 1573-1579. doi: 10.1007/s40265-021-01574-2 PMID: 34357500
- Deeks, E.D. Asciminib: First Approval. Drugs, 2022, 82(2), 219-226. doi: 10.1007/s40265-021-01662-3 PMID: 35041175
- Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S.W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; Groell, J.M.; Grotzfeld, R.M.; Hassan, A.Q.; Henry, C.; Iyer, V.; Jones, D.; Lombardo, F.; Loo, A.; Manley, P.W.; Pellé, X.; Rummel, G.; Salem, B.; Warmuth, M.; Wylie, A.A.; Zoller, T.; Marzinzik, A.L.; Furet, P. Discovery of asciminib(ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem., 2018, 61(18), 8120-8135. doi: 10.1021/acs.jmedchem.8b01040 PMID: 30137981
- Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569. doi: 10.1038/s41573-021-00195-4 PMID: 34002056
- Réa, D.; Hughes, T.P. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit. Rev. Oncol. Hematol., 2022, 171, 103580. doi: 10.1016/j.critrevonc.2022.103580 PMID: 35021069
- Nagar, B.; Hantschel, O.; Young, M.A.; Scheffzek, K.; Veach, D.; Bornmann, W.; Clarkson, B.; Superti-Furga, G.; Kuriyan, J. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell, 2003, 112(6), 859-871. doi: 10.1016/S0092-8674(03)00194-6 PMID: 12654251
- Hantschel, O.; Nagar, B.; Guettler, S.; Kretzschmar, J.; Dorey, K.; Kuriyan, J.; Superti-Furga, G. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell, 2003, 112(6), 845-857. doi: 10.1016/S0092-8674(03)00191-0 PMID: 12654250
- Adrián, F.J.; Ding, Q.; Sim, T.; Velentza, A.; Sloan, C.; Liu, Y.; Zhang, G.; Hur, W.; Ding, S.; Manley, P.; Mestan, J.; Fabbro, D.; Gray, N.S. Allosteric inhibitors of Bcr-abldependent cell proliferation. Nat. Chem. Biol., 2006, 2(2), 95-102. doi: 10.1038/nchembio760 PMID: 16415863
- Schiffer, C.A. Asciminib for CML: Same target, new arrow. Blood, 2021, 138(21), 2009-2010. doi: 10.1182/blood.2021013257 PMID: 34821938
- Addie, M.; Ballard, P.; Buttar, D.; Crafter, C.; Currie, G.; Davies, B.R.; Debreczeni, J.; Dry, H.; Dudley, P.; Greenwood, R.; Johnson, P.D.; Kettle, J.G.; Lane, C.; Lamont, G.; Leach, A.; Luke, R.W.A.; Morris, J.; Ogilvie, D.; Page, K.; Pass, M.; Pearson, S.; Ruston, L. Discovery of 4-Amino- N -(1 S)-1-(4-chlorophenyl)-3-hydroxypropyl-1-(7 H -pyrrolo2,3- dpyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases. J. Med. Chem., 2013, 56(5), 2059-2073. doi: 10.1021/jm301762v PMID: 23394218
- Siu, K.T.; Ramachandran, J.; Yee, A.J.; Eda, H.; Santo, L.; Panaroni, C.; Mertz, J.A.; Sims, R.J., III; Cooper, M.R.; Raje, N. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia, 2017, 31(8), 1760-1769. doi: 10.1038/leu.2016.355 PMID: 27890933
- Gehling, V.S.; Hewitt, M.C.; Vaswani, R.G.; Leblanc, Y.; Côté, A.; Nasveschuk, C.G.; Taylor, A.M.; Harmange, J.C.; Audia, J.E.; Pardo, E.; Joshi, S.; Sandy, P.; Mertz, J.A.; Sims, R.J., III; Bergeron, L.; Bryant, B.M.; Bellon, S.; Poy, F.; Jayaram, H.; Sankaranarayanan, R.; Yellapantula, S.; Bangalore Srinivasamurthy, N.; Birudukota, S.; Albrecht, B.K. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med. Chem. Lett., 2013, 4(9), 835-840. doi: 10.1021/ml4001485 PMID: 24900758
- Mullard, A. Antibody clamps pry open small-molecule drug discovery opportunities. Nat. Rev. Drug Discov., 2022, 21(4), 247-248. doi: 10.1038/d41573-022-00054-w PMID: 35288684
- Brown, A.J.H.; Bradley, S.J.; Marshall, F.H.; Brown, G.A.; Bennett, K.A.; Brown, J.; Cansfield, J.E.; Cross, D.M.; de Graaf, C.; Hudson, B.D.; Dwomoh, L.; Dias, J.M.; Errey, J.C.; Hurrell, E.; Liptrot, J.; Mattedi, G.; Molloy, C.; Nathan, P.J.; Okrasa, K.; Osborne, G.; Patel, J.C.; Pickworth, M.; Robertson, N.; Shahabi, S.; Bundgaard, C.; Phillips, K.; Broad, L.M.; Goonawardena, A.V.; Morairty, S.R.; Browning, M.; Perini, F.; Dawson, G.R.; Deakin, J.F.W.; Smith, R.T.; Sexton, P.M.; Warneck, J.; Vinson, M.; Tasker, T.; Tehan, B.G.; Teobald, B.; Christopoulos, A.; Langmead, C.J.; Jazayeri, A.; Cooke, R.M.; Rucktooa, P.; Congreve, M.S.; Weir, M.; Tobin, A.B. From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell, 2021, 184(24), 5886-5901.e22. doi: 10.1016/j.cell.2021.11.001 PMID: 34822784
- Markert, C.; Thoma, G.; Srinivas, H.; Bollbuck, B.; Lüönd, R.M.; Miltz, W.; Wälchli, R.; Wolf, R.; Hinrichs, J.; Bergsdorf, C.; Azzaoui, K.; Penno, C.A.; Klein, K.; Wack, N.; Jäger, P.; Hasler, F.; Beerli, C.; Loetscher, P.; Dawson, J.; Wieczorek, G.; Numao, S.; Littlewood-Evans, A.; Röhn, T.A. Discovery of LYS006, a potent and highly selective inhibitor of leukotriene A4 hydrolase. J. Med. Chem., 2021, 64(4), 1889-1903. doi: 10.1021/acs.jmedchem.0c01955 PMID: 33592148
- Lee, K.L.; Ambler, C.M.; Anderson, D.R.; Boscoe, B.P.; Bree, A.G.; Brodfuehrer, J.I.; Chang, J.S.; Choi, C.; Chung, S.; Curran, K.J.; Day, J.E.; Dehnhardt, C.M.; Dower, K.; Drozda, S.E.; Frisbie, R.K.; Gavrin, L.K.; Goldberg, J.A.; Han, S.; Hegen, M.; Hepworth, D.; Hope, H.R.; Kamtekar, S.; Kilty, I.C.; Lee, A.; Lin, L.L.; Lovering, F.E.; Lowe, M.D.; Mathias, J.P.; Morgan, H.M.; Murphy, E.A.; Papaioannou, N.; Patny, A.; Pierce, B.S.; Rao, V.R.; Saiah, E.; Samardjiev, I.J.; Samas, B.M.; Shen, M.W.H.; Shin, J.H.; Soutter, H.H.; Strohbach, J.W.; Symanowicz, P.T.; Thomason, J.R.; Trzupek, J.D.; Vargas, R.; Vincent, F.; Yan, J.; Zapf, C.W.; Wright, S.W. Discovery of Clinical Candidate 1-(2 S, 3 S, 4 S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-ylmethoxy-7-methoxyisoquinoline-6-carboxamide (PF-06650833), a potent, selective inhibitor of interleukin-1 receptor associated kinase 4 (IRAK4), by fragment-based drug design. J. Med. Chem., 2017, 60(13), 5521-5542. doi: 10.1021/acs.jmedchem.7b00231 PMID: 28498658
- Messick, T.E.; Smith, G.R.; Soldan, S.S.; McDonnell, M.E.; Deakyne, J.S.; Malecka, K.A.; Tolvinski, L.; van den Heuvel, A.P.J.; Gu, B.W.; Cassel, J.A.; Tran, D.H.; Wassermann, B.R.; Zhang, Y.; Velvadapu, V.; Zartler, E.R.; Busson, P.; Reitz, A.B.; Lieberman, P.M. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Sci. Transl. Med., 2019, 11(482), eaau5612. doi: 10.1126/scitranslmed.aau5612 PMID: 30842315
- Maragno, A.L.; Mistry, P.; Kotschy, A. Abstract 4482: S64315 (MIK665) is a potent and selective Mcl1 inhibitor with strong antitumor activity across a diverse range of hematologic tumor models. In: Exper. Mol. Therap; American Association for Cancer Research, 2019. doi: 10.1158/1538-7445.AM2019-4482
- Reich, S.H.; Sprengeler, P.A.; Chiang, G.G.; Appleman, J.R.; Chen, J.; Clarine, J.; Eam, B.; Ernst, J.T.; Han, Q.; Goel, V.K.; Han, E.Z.R.; Huang, V.; Hung, I.N.J.; Jemison, A.; Jessen, K.A.; Molter, J.; Murphy, D.; Neal, M.; Parker, G.S.; Shaghafi, M.; Sperry, S.; Staunton, J.; Stumpf, C.R.; Thompson, P.A.; Tran, C.; Webber, S.E.; Wegerski, C.J.; Zheng, H.; Webster, K.R. Structure-based design of pyridoneaminal eFT508 targeting dysregulated translation by selective mitogen-activated protein kinase interacting kinases 1 and 2(MNK1/2) inhibition. J. Med. Chem., 2018, 61(8), 3516-3540. doi: 10.1021/acs.jmedchem.7b01795 PMID: 29526098
- Tron, A.E.; Belmonte, M.A.; Adam, A.; Aquila, B.M.; Boise, L.H.; Chiarparin, E.; Cidado, J.; Embrey, K.J.; Gangl, E.; Gibbons, F.D.; Gregory, G.P.; Hargreaves, D.; Hendricks, J.A.; Johannes, J.W.; Johnstone, R.W.; Kazmirski, S.L.; Kettle, J.G.; Lamb, M.L.; Matulis, S.M.; Nooka, A.K.; Packer, M.J.; Peng, B.; Rawlins, P.B.; Robbins, D.W.; Schuller, A.G.; Su, N.; Yang, W.; Ye, Q.; Zheng, X.; Secrist, J.P.; Clark, E.A.; Wilson, D.M.; Fawell, S.E.; Hird, A.W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun., 2018, 9(1), 5341. doi: 10.1038/s41467-018-07551-w PMID: 30559424
- Johnson, C.N.; Ahn, J.S.; Buck, I.M.; Chiarparin, E.; Day, J.E.H.; Hopkins, A.; Howard, S.; Lewis, E.J.; Martins, V.; Millemaggi, A.; Munck, J.M.; Page, L.W.; Peakman, T.; Reader, M.; Rich, S.J.; Saxty, G.; Smyth, T.; Thompson, N.T.; Ward, G.A.; Williams, P.A.; Wilsher, N.E.; Chessari, G. A fragment-derived clinical candidate for antagonism of X-Linked and Cellular Inhibitor of Apoptosis Proteins: 1-(6-(4-Fluorophenyl)methyl-5-(hydroxymethyl)-3,3-dimethyl-1 H, 2 H, 3 H -pyrrolo3,2- bpyridin-1-yl)-2-(2 R, 5 R)-5-methyl-2-((3R)-3-methylmorpholin-4-ylmethyl)piperazin-1-ylethan-1-one (ASTX660). J. Med. Chem., 2018, 61(16), 7314-7329. doi: 10.1021/acs.jmedchem.8b00900 PMID: 30091600
- Munck, J.M.; Berdini, V.; Bevan, L.; Brothwood, J.L.; Castro, J.; Courtin, A.; East, C.; Ferraldeschi, R.; Heightman, T.D.; Hindley, C.J.; Kucia-Tran, J.; Lyons, J.F.; Martins, V.; Muench, S.; Murray, C.W.; Norton, D.; O'Reilly, M.; Reader, M.; Rees, D.C.; Rich, S.J.; Richardson, C.J.; Shah, A.D.; Stanczuk, L.; Thompson, N.T.; Wilsher, N.E.; Woolford, A.J.A.; Wallis, N.G. ASTX029, a novel dual-mechanism ERK inhibitor, modulates both the phosphorylation and catalytic activity of ERK. Mol. Cancer Ther., 2021, 20(10), 1757-1768. doi: 10.1158/1535-7163.MCT-20-0909 PMID: 34330842
- Smith, C.R.; Aranda, R.; Bobinski, T.P.; Briere, D.M.; Burns, A.C.; Christensen, J.G.; Clarine, J.; Engstrom, L.D.; Gunn, R.J.; Ivetac, A.; Jean-Baptiste, R.; Ketcham, J.M.; Kobayashi, M.; Kuehler, J.; Kulyk, S.; Lawson, J.D.; Moya, K.; Olson, P.; Rahbaek, L.; Thomas, N.C.; Wang, X.; Waters, L.M.; Marx, M.A. Fragment-based discovery of MRTX1719, a synthetic lethal inhibitor of the PRMT5MTA complex for the treatment of MTAP-deleted cancers. J. Med. Chem., 2022, 65(3), 1749-1766. doi: 10.1021/acs.jmedchem.1c01900 PMID: 35041419
- Konteatis, Z.; Travins, J.; Gross, S.; Marjon, K.; Barnett, A.; Mandley, E.; Nicolay, B.; Nagaraja, R.; Chen, Y.; Sun, Y.; Liu, Z.; Yu, J.; Ye, Z.; Jiang, F.; Wei, W.; Fang, C.; Gao, Y.; Kalev, P.; Hyer, M.L.; DeLaBarre, B.; Jin, L.; Padyana, A.K.; Dang, L.; Murtie, J.; Biller, S.A.; Sui, Z.; Marks, K.M. Discovery of AG-270, a first-in-class oral MAT2A inhibitor for the treatment of tumors with homozygous MTAP deletion. J. Med. Chem., 2021, 64(8), 4430-4449. doi: 10.1021/acs.jmedchem.0c01895 PMID: 33829783
Arquivos suplementares
