Gambogic Acid Lysinate-induced Cervical Cancer SiHa Cells Apoptosis in vitro and in vivo


Citar

Texto integral

Resumo

Background: Surgical resection and chemotherapy are the primary treatment options for cervical cancer; however, efficacy of chemotherapy drugs is limited by drug resistance. There is an urgent need to find new compounds. Gambogic acid lysinate (GAL), a new compound made from gambogic acid and lysine, has good anti-tumor activity, however, the effect of GAL on cervical cancer remains undetermined.

Objective: The present study sought to explore the anti-tumor activity of GAL in SiHa cells.

Methods: Cell viability was detected by means of an MTT assay, a cell growth curve was drawn with Microsoft Excel 2010, the cell cycle and cell apoptosis were evaluated by flow cytometry, and Western blotting was employed to explore the mechanism of GAL. Additionally, the in vivo anti-tumor activity of GAL was studied through a xenograft tumor model in nude mice.

Results: GAL inhibited the proliferation of both SiHa cells (IC50 was 0.83 µmol/l and 0.77 µmol/l respectively for 48 h and 72 h) and HeLa cells (IC50 did not reach). In SiHa cells, GAL (1 and 2 µmol/l) inhibited cell proliferation and 2 µmol/l GAL could also induce cell apoptosis and decrease the number of S phase. Both 1 and 2 µmol/l GAL inhibited SiHa cells invasion and increased the number of G0/G1 phase. The results of Western blot assay demonstrated that P53 and P21 were involved in SiHa cells S phase arrest and BCL-2 and BAX were involved in SiHa cells apoptosis. In vivo study showed that the growth of SiHa cell xenograft tumors was inhibited via cell apoptosis induced by GAL (2.5 mg/kg body weight), however, GAL (2.5 mg/kg body weight) had no significant effect on weight gain of mice.

Conclusion: GAL induced SiHa cells apoptosis by BCL-2 and BAX pathway and SiHa cells S phase arrest by P53 and P21 pathway in vitro and inhibited the growth of SiHa cell xenograft tumors.

Sobre autores

Jingyu Sun

The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission

Email: info@benthamscience.net

Yahua Liu

Emergence Department, The Third Medical Center, Chinese PLA (People's Liberation Army) General Hospital

Email: info@benthamscience.net

Jun Guo

The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission

Email: info@benthamscience.net

Xin Zhang

The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission

Email: info@benthamscience.net

Yajun Lin

The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission

Autor responsável pela correspondência
Email: info@benthamscience.net

Jie Niu

The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission

Email: info@benthamscience.net

Bibliografia

  1. Olusola, P.; Banerjee, H.N.; Philley, J.V.; Dasgupta, S. Human papilloma virus-associated cervical cancer and health disparities. Cells, 2019, 8(6), 622. doi: 10.3390/cells8060622 PMID: 31234354
  2. Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182. doi: 10.1016/S0140-6736(18)32470-X PMID: 30638582
  3. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108. doi: 10.3322/caac.21262 PMID: 25651787
  4. Di, J.; Rutherford, S.; Chu, C. Review of the cervical cancer burden and population-based cervical cancer screening in China. Asian Pac. J. Cancer Prev., 2015, 16(17), 7401-7407. doi: 10.7314/APJCP.2015.16.17.7401 PMID: 26625735
  5. Hull, R.; Mbele, M.; Makhafola, T.; Hicks, C.; Wang, S.M.; Reis, R.; Mehrotra, R.; Mkhize-Kwitshana, Z.; Kibiki, G.; Bates, D.; Dlamini, Z. Cervical cancer in low and middle income countries. Oncol. Lett., 2020, 20(3), 2058-2074. doi: 10.3892/ol.2020.11754 PMID: 32782524
  6. Wang, X.; Chen, W. Gambogic acid is a novel anti-cancer agent that inhibits cell proliferation, angiogenesis and metastasis. Anticancer. Agents Med. Chem., 2012, 12(8), 994-1000. doi: 10.2174/187152012802650066 PMID: 22339063
  7. Wang, W.; Li, Y.; Chen, Y.; Chen, H.; Zhu, P.; Xu, M.; Wang, H.; Wu, M.; Yang, Z.; Hoffman, R.M.; Gu, Y. Ethanolic extract of traditional chinese medicine (TCM) Gamboge inhibits colon cancer via the wnt/beta-catenin signaling pathway in an orthotopic mouse model. Anticancer Res., 2018, 38(4), 1917-1925. doi: 10.21873/anticanres.12429 PMID: 29599307
  8. Li, M.; Su, F.L.; Zhu, M.T.; Zhang, H.; Wei, Y.X.; Zhao, Y.; Li, J.M.; Lv, S.W. Research progress in the field of gambogic acid and its derivatives as antineoplastic drugs. Molecules, 2022, 27(9), 2937. doi: 10.3390/molecules27092937
  9. Wang, Y.; Sui, Y.; Tao, Y. Gambogic acid increases the sensitivity to paclitaxel in drug resistant triple negative breast cancer via the SHH signaling pathway. Mol. Med. Rep., 2019, 20(5), 4515-4522. doi: 10.3892/mmr.2019.10697 PMID: 31545492
  10. Zhao, T.; Wang, H.J.; Zhao, W.W.; Sun, Y.L.; Hu, L.K. Gambogic acid improves non-small cell lung cancer progression by inhibition of mTOR signaling pathway. Kaohsiung J. Med. Sci., 2017, 33(11), 543-549. doi: 10.1016/j.kjms.2017.06.013 PMID: 29050671
  11. Zhen, Y.Z.; Lin, Y.J.; Li, K.J.; Yang, X.S.; Zhao, Y.F.; Wei, J.; Wei, J.B.; Hu, G. Gambogic acid lysinate induces apoptosis in breast cancer MCF-7 cells by increasing reactive oxygen species. Evid. Based Compl. Altern. Med., 2015, 2015842091 doi: 10.1155/2015/842091 PMID: 25866542
  12. Jones, J.I.; Gockerman, A.; Busby, W.H., Jr; Wright, G.; Clemmons, D.R. Insulin-like growth factor binding protein 1 stimulates cell mi-gration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence. Proc. Natl. Acad. Sci. USA, 1993, 90(22), 10553-10557. doi: 10.1073/pnas.90.22.10553 PMID: 7504269
  13. Hu, Y.; Rao, S.S.; Wang, Z.X.; Cao, J.; Tan, Y.J.; Luo, J.; Li, H.M.; Zhang, W.S.; Chen, C.Y.; Xie, H. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics, 2018, 8(1), 169-184. doi: 10.7150/thno.21234 PMID: 29290800
  14. Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791. doi: 10.1097/CM9.0000000000001474 PMID: 33734139
  15. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  16. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  17. Lin, J.; Chen, L.; Qiu, X.; Zhang, N.; Guo, Q.; Wang, Y.; Wang, M.; Gober, H.J.; Li, D.; Wang, L. Traditional Chinese medicine for human papillomavirus (HPV) infections: A systematic review. Biosci. Trends, 2017, 11(3), 267-273. doi: 10.5582/bst.2017.01056 PMID: 28484110
  18. Banik, K.; Harsha, C.; Bordoloi, D.; Lalduhsaki Sailo, B.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; Kun-numakkara, A.B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett., 2018, 416, 75-86. doi: 10.1016/j.canlet.2017.12.014 PMID: 29246645
  19. Reszegi, A.; Horváth, Z.; Karászi, K.; Regős, E.; Postniková, V.; Tátrai, P.; Kiss, A.; Schaff, Z.; Kovalszky, I.; Baghy, K. The protective role of decorin in hepatic metastasis of colorectal carcinoma. Biomolecules, 2020, 10(8), 1199. doi: 10.3390/biom10081199 PMID: 32824864
  20. Frame, F.M.; Rogoff, H.A.; Pickering, M.T.; Cress, W.D.; Kowalik, T.F. E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts. Oncogene, 2006, 25(23), 3258-3266. doi: 10.1038/sj.onc.1209352 PMID: 16434972
  21. Shamsi-Gamchi, N.; Razi, M.; Behfar, M. Cross-link between mitochondrial-dependent apoptosis and cell cycle checkpoint proteins after experimental torsion and detorsion in rats. Gene, 2021, 795145793 doi: 10.1016/j.gene.2021.145793 PMID: 34175398
  22. Desroches, A.; Denault, J.B. Characterization of caspase-7 interaction with RNA. Biochem. J., 2021, 478(13), 2681-2696. doi: 10.1042/BCJ20210366 PMID: 34156061
  23. Choi, H.S.; Han, S.; Yokota, H.; Cho, K.H. Coupled positive feedbacks provoke slow induction plus fast switching in apoptosis. FEBS Lett., 2007, 581(14), 2684-2690. doi: 10.1016/j.febslet.2007.05.016 PMID: 17532319
  24. Xiao, Z-J.; Wu, H.; Tan, J.; Chen, S-X.; Lei, Q-Y.; Yi, S-Q.; Wu, N.; Wang, Y-L. Mitochonic acid 5 regulates mitofusin 2 to protect micro-glia. Neural Regen. Res., 2021, 16(9), 1813-1820. doi: 10.4103/1673-5374.306094 PMID: 33510088
  25. Bas, J.; Nguyen, T.; Gillet, G. Involvement of Bcl-xL in neuronal function and development. Int. J. Mol. Sci., 2021, 22(6), 3202. doi: 10.3390/ijms22063202 PMID: 33801158

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023