MDM2-mediated Inhibitory Effect of Arsenic Trioxide on Small Cell Lung Cancer Cell Line by Degrading Mutant p53
- Autores: Wang Y.1, Yin J.1, Shi X.2, Zhao X.3, Li B.4, Yang M.5
-
Afiliações:
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University,
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine,, Tongji University
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital,, Naval Medical University
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University,
- Edição: Volume 23, Nº 16 (2023)
- Páginas: 1829-1837
- Seção: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694356
- DOI: https://doi.org/10.2174/1871520623666230530095435
- ID: 694356
Citar
Texto integral
Resumo
Introduction:Small cell lung cancer (SCLC) is featured by a high TP53 mutant rate. Our previous research found that arsenic trioxide (As2O3) could significantly inhibit the growth and metastasis of SCLC. Studies have shown that the degradation of mutant p53 mediated by murine double minute 2 (MDM2) can be induced by As2O3, which probably contributes to the inhibition of SCLC, but the detailed mechanism is still unclear. We aimed to testify that As2O3 can inhibit the growth of SCLC cells by degrading mutant p53 protein via binding to MDM2.
Methods: CCK-8 assay, cell cycle analysis, and western blot of apoptosis markers were used to evaluate the inhibitory effect of As2O3 on NCI-H446 cells (containing mutant p53) and NCI-H1299 cells (p53 null). The effects of As2O3 on p53 and its downstream proteins were identified by western blot using mut-p53-knockdown and overexpressed cell models. MDM2-knockdown cell models were constructed, and western blot, co-IP of mut-p53, and ubiquitin were carried out to explore the mediating effect of MDM2 in As2O3 induced mut-p53 degradation.
Results: As2O3 inhibited proliferation and induced cell cycle arrest and apoptosis of SCLC cells in a dose- and timedependent manner. After mut-p53 knockdown or overexpressed, the inhibitory effect of As2O3 was dampened or enhanced. Additionally, As2O3-induced mut-p53 ubiquitination was significantly weakened after MDM2 knockdown.
Conclusion: As2O3 could inhibit SCLC cells by inhibiting proliferation and inducing cell cycle arrest and apoptosis. These inhibitory effects were achieved at least in part by upregulating MDM2, which, in turn, promotes ubiquitination and degradation of mut-p53.
Palavras-chave
Sobre autores
Yu-Sheng Wang
Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University
Email: info@benthamscience.net
Ji-Zhong Yin
Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University
Email: info@benthamscience.net
Xiao-Qian Shi
Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University,
Email: info@benthamscience.net
Xue-Wei Zhao
Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine,, Tongji University
Email: info@benthamscience.net
Bing Li
Department of Respiratory and Critical Care Medicine, Changzheng Hospital,, Naval Medical University
Autor responsável pela correspondência
Email: info@benthamscience.net
Meng-Hang Yang
Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University,
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387. doi: 10.1016/j.jtho.2021.11.003 PMID: 34808341
- Bernhardt, E.B.; Jalal, S.I. Small cell lung cancer. Cancer Treat. Res., 2016, 170, 301-322. doi: 10.1007/978-3-319-40389-2_14 PMID: 27535400
- Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: What we know, what we need to know and the path forward. Nat. Rev. Cancer, 2017, 17(12), 725-737. doi: 10.1038/nrc.2017.87 PMID: 29077690
- Levine, A.J.; Hu, W.; Feng, Z. The P53 pathway: What questions remain to be explored? Cell Death Differ., 2006, 13(6), 1027-1036. doi: 10.1038/sj.cdd.4401910 PMID: 16557269
- Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell, 2009, 137(3), 413-431. doi: 10.1016/j.cell.2009.04.037 PMID: 19410540
- Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer, 2009, 9(10), 749-758. doi: 10.1038/nrc2723 PMID: 19776744
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y. Ozretić L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; Müller, C.; Dahmen, I.; Jahchan, N.S.; Park, K.S.; Yang, D.; Karnezis, A.N.; Vaka, D.; Torres, A.; Wang, M.S.; Korbel, J.O.; Menon, R.; Chun, S.M.; Kim, D.; Wilkerson, M.; Hayes, N.; Engelmann, D.; Pützer, B.; Bos, M.; Michels, S.; Vlasic, I.; Seidel, D.; Pinther, B.; Schaub, P.; Becker, C.; Altmüller, J.; Yokota, J.; Kohno, T.; Iwakawa, R.; Tsuta, K.; Noguchi, M.; Muley, T.; Hoffmann, H.; Schnabel, P.A.; Petersen, I.; Chen, Y.; Soltermann, A.; Tischler, V.; Choi, C.; Kim, Y.H.; Massion, P.P.; Zou, Y.; Jovanovic, D.; Kontic, M.; Wright, G.M.; Russell, P.A.; Solomon, B.; Koch, I.; Lindner, M.; Muscarella, L.A.; la Torre, A.; Field, J.K.; Jakopovic, M.; Knezevic, J.; Castaños-Vélez, E.; Roz, L.; Pastorino, U.; Brustugun, O.T.; Lund-Iversen, M.; Thunnissen, E.; Köhler, J.; Schuler, M.; Botling, J.; Sandelin, M.; Sanchez-Cespedes, M.; Salvesen, H.B.; Achter, V.; Lang, U.; Bogus, M.; Schneider, P.M.; Zander, T.; Ansén, S.; Hallek, M.; Wolf, J.; Vingron, M.; Yatabe, Y.; Travis, W.D.; Nürnberg, P.; Reinhardt, C.; Perner, S.; Heukamp, L.; Büttner, R.; Haas, S.A.; Brambilla, E.; Peifer, M.; Sage, J.; Thomas, R.K. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563), 47-53. doi: 10.1038/nature14664 PMID: 26168399
- Hayashi, Y.; Tsujii, M.; Kodama, T.; Akasaka, T.; Kondo, J.; Hikita, H.; Inoue, T.; Tsujii, Y.; Maekawa, A.; Yoshii, S.; Shinzaki, S.; Watabe, K.; Tomita, Y.; Inoue, M.; Tatsumi, T.; Iijima, H.; Takehara, T. p53 functional deficiency in human colon cancer cells promotes fibroblast-mediated angiogenesis and tumor growth. Carcinogenesis, 2016, 37(10), 972-984. doi: 10.1093/carcin/bgw085 PMID: 27520561
- Molchadsky, A.; Rotter, V. p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis, 2017, 38(4), 347-358. doi: 10.1093/carcin/bgw092 PMID: 28334334
- Stiewe, T.; Haran, T.E. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist. Updat., 2018, 38, 27-43. doi: 10.1016/j.drup.2018.05.001 PMID: 29857816
- Chen, G.Q.; Shi, X.G.; Tang, W.; Xiong, S.M.; Zhu, J.; Cai, X.; Han, Z.G.; Ni, J.H.; Shi, G.Y.; Jia, P.M.; Liu, M.M.; He, K.L.; Niu, C.; Ma, J.; Zhang, P.; Zhang, T.D.; Paul, P.; Naoe, T.; Kitamura, K.; Miller, W.; Waxman, S.; Wang, Z.Y.; de The, H.; Chen, S.J.; Chen, Z. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood, 1997, 89(9), 3345-3353. PMID: 9129041
- Shi, X.Q.Y.; Huang, H.; Fang, Z.; Shi, Z.Q.; Tang, H.; Waxman, S.; Wang, Z.Y. Efficacy and mechanism of arsenic trioxide intrapleural injection in non-small cell lung cancer patients with malignant pleural effusions. J. Intern. Med. Concepts. Pract., 2019, 14(2), 77-82.
- Xie, S.L.; Yang, M.H.; Chen, K.; Huang, H.; Zhao, X.W.; Zang, Y.S.; Li, B. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem. Biophys., 2015, 71(3), 1325-1333. doi: 10.1007/s12013-014-0352-3 PMID: 25413961
- Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566. doi: 10.2174/1568009614666140725090000 PMID: 25088040
- Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. BioMed Res. Int., 2019, 2019, 1-9. doi: 10.1155/2019/4647252 PMID: 31093499
- Zheng, J.C.; Chang, K.J.; Jin, Y.X.; Zhao, X.W.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the metastasis of small cell lung cancer by blocking calcineurin-nuclear factor of activated t cells (NFAT) signaling. Med. Sci. Monit., 2019, 25, 2228-2237. doi: 10.12659/MSM.913091 PMID: 30913205
- Chang, K.J.; Yang, M.H.; Zheng, J.C.; Li, B.; Nie, W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am. J. Transl. Res., 2016, 8(2), 1133-1143. PMID: 27158399
- Schwaederlé, M.; Lazar, V.; Validire, P.; Hansson, J.; Lacroix, L.; Soria, J.C.; Pawitan, Y.; Kurzrock, R. VEGF-A expression correlates with TP53 mutations in nonsmall cell lung cancer: Implications for antiangiogenesis therapy. Cancer Res., 2015, 75(7), 1187-1190. doi: 10.1158/0008-5472.CAN-14-2305 PMID: 25672981
- Shinmen, N.; Koshida, T.; Kumazawa, T.; Sato, K.; Shimada, H.; Matsutani, T.; Iwadate, Y.; Takiguchi, M.; Hiwasa, T. Activation of NFAT signal by p53-K120R mutant. FEBS Lett., 2009, 583(12), 1916-1922. doi: 10.1016/j.febslet.2009.04.041 PMID: 19416725
- Yoon, J.W.; Lamm, M.; Iannaccone, S.; Higashiyama, N.; Leong, K.F.; Iannaccone, P.; Walterhouse, D. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. DNA Repair (Amst.), 2015, 34, 9-17. doi: 10.1016/j.dnarep.2015.06.006 PMID: 26282181
- Yan, W.; Jung, Y.S.; Zhang, Y.; Chen, X. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS One, 2014, 9(8), e103497. doi: 10.1371/journal.pone.0103497 PMID: 25116336
- Yan, W.; Zhang, Y.; Zhang, J.; Liu, S.; Cho, S.J.; Chen, X. Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression. J. Biol. Chem., 2011, 286(20), 17478-17486. doi: 10.1074/jbc.M111.231639 PMID: 21454520
- Chen, S.; Wu, J.L.; Liang, Y.; Tang, Y.G.; Song, H.X.; Wu, L.L.; Xing, Y.F.; Yan, N.; Li, Y.T.; Wang, Z.Y.; Xiao, S.J.; Lu, X.; Chen, S.J.; Lu, M. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell, 2021, 39(2), 225-239.e8. doi: 10.1016/j.ccell.2020.11.013
- Zhao, Y.; Yu, H.; Hu, W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin., 2014, 46(3), 180-189. doi: 10.1093/abbs/gmt147 PMID: 24389645
- Midgley, C.A.; Lane, D.P. p53 protein stability in tumour cells is not determined by mutation but is dependent on MDM2 binding. Oncogene, 1997, 15(10), 1179-1189. doi: 10.1038/sj.onc.1201459 PMID: 9294611
- Chou, R.H.; Huang, H. Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem. Biophys. Res. Commun., 2002, 293(1), 298-306. doi: 10.1016/S0006-291X(02)00212-7 PMID: 12054599
- Chen, X.; Zhang, M.; Liu, L.X. The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncol. Rep., 2009, 22(1), 73-80. PMID: 19513507
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr(III), Fe(III) and Cu(II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117700. doi: 10.1016/j.saa.2019.117700 PMID: 31748163
- Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct., 2021, 1242, 130693. doi: 10.1016/j.molstruc.2021.130693
- El‐Remaily, M.A.E.A.A.A. Rapidly, highly yielded and green synthesis of dihydrotetrazolo1,5‐apyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl. Organomet. Chem., 2021.
- Aljohani, S. Design, structural inspection of new bis(1H-benzodimidazol-2-yl)methanone complexes: Biomedical applications and theoretical implementations via DFT and docking approaches. Inorg. Chem. Commun., 2022, 72023, 110331.
- Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem., 2022, 97(C), 107643. doi: 10.1016/j.compbiolchem.2022.107643 PMID: 35189479
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607. doi: 10.1038/nature11003 PMID: 22460905
- Byers, L.A.; Rudin, C.M. Small cell lung cancer: Where do we go from here? Cancer, 2015, 121(5), 664-672. doi: 10.1002/cncr.29098 PMID: 25336398
- Schulz-Heddergott, R.; Moll, U. Gain-of-Function (GOF) Mutant p53 as actionable therapeutic target. Cancers, 2018, 10(6), 188. doi: 10.3390/cancers10060188 PMID: 29875343
- Duffy, M.J. Targeting p53 for the treatment of cancer. Semin. Cancer Biol., 2020, 2022, 58-67. PMID: 32741700
- Zandi, R.; Selivanova, G.; Christensen, C.L.; Gerds, T.A.; Willumsen, B.M.; Poulsen, H.S. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin. Cancer Res., 2011, 17(9), 2830-2841. doi: 10.1158/1078-0432.CCR-10-3168 PMID: 21415220
- Gazitt, Y.; Akay, C. Arsenic trioxide: An anti cancer missile with multiple warheads. Hematology, 2005, 10(3), 205-213. doi: 10.1080/10245330500067090 PMID: 16019469
- Huang, C.; Ma, W.Y.; Li, J.; Dong, Z. Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res., 1999, 59(13), 3053-3058. PMID: 10397243
- Liu, Q.; Hilsenbeck, S.; Gazitt, Y. Arsenic trioxideinduced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood, 2003, 101(10), 4078-4087. doi: 10.1182/blood-2002-10-3231 PMID: 12531793
- Akay, C.; Gazitt, Y. Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle, 2003, 2(4), 358-368. PMID: 12851490
- Boyko-Fabian, M.; Niehr, F.; Distel, L.; Budach, V.; Tinhofer, I. Increased growth-inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PLoS One, 2014, 9(6), e98867. doi: 10.1371/journal.pone.0098867 PMID: 24927258
- Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104. doi: 10.1101/cshperspect.a026104 PMID: 26931810
- Morsi, R.Z.; Hage-Sleiman, R.; Kobeissy, H.; Dbaibo, G. Noxa: Role in cancer pathogenesis and treatment. Curr. Cancer Drug Targets, 2018, 18(10), 914-928. doi: 10.2174/1568009618666180308105048 PMID: 29521234
- Chipuk, J.E.; Bouchier-Hayes, L.; Kuwana, T.; Newmeyer, D.D.; Green, D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 2005, 309(5741), 1732-1735. doi: 10.1126/science.1114297 PMID: 16151013
- Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.; Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998, 282(5393), 1497-1501. doi: 10.1126/science.282.5393.1497 PMID: 9822382
- Subhasree, N.; Jiangjiang, Q.; Kalkunte, S.; Minghai, W.; Ruiwen, Z. The MDM2-p53 pathway revisited. J. Biomed. Res., 2013, 27(4), 254-271. doi: 10.7555/JBR.27.20130030 PMID: 23885265
- Hamadeh, H.K.; Vargas, M.; Lee, E.; Menzel, D.B. Arsenic disrupts cellular levels of p53 and MDM2: A potential mechanism of carcinogenesis. Biochem. Biophys. Res. Commun., 1999, 263(2), 446-449. doi: 10.1006/bbrc.1999.1395 PMID: 10491313
- Huang, Y.; Zhang, J.; McHenry, K.T.; Kim, M.M.; Zeng, W.; Lopez-Pajares, V.; Dibble, C.C.; Mizgerd, J.P.; Yuan, Z.M. Induction of cytoplasmic accumulation of p53: A mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res., 2008, 68(22), 9131-9136. doi: 10.1158/0008-5472.CAN-08-3025 PMID: 19010883
- Halasi, M.; Pandit, B.; Gartel, A.L. Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle, 2014, 13(20), 3202-3206. doi: 10.4161/15384101.2014.950132 PMID: 25485499
- Zhu, H.B.; Yang, K.; Xie, Y.Q.; Lin, Y.W.; Mao, Q.Q.; Xie, L.P. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells. World J. Surg. Oncol., 2013, 11(1), 22. doi: 10.1186/1477-7819-11-22 PMID: 23356234
- Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360. doi: 10.1038/nrm.2017.20 PMID: 28429788
- Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21 WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci., 2000, 97(18), 10014-10019. doi: 10.1073/pnas.180316197 PMID: 10954755
- Jadhav, V.; Ray, P.; Sachdeva, G.; Bhatt, P. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci., 2016, 148, 41-52. doi: 10.1016/j.lfs.2016.02.042 PMID: 26883975
- Li, Y.; Qu, X.; Qu, J.; Zhang, Y.; Liu, J.; Teng, Y.; Hu, X.; Hou, K.; Liu, Y. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett., 2009, 284(2), 208-215. doi: 10.1016/j.canlet.2009.04.035 PMID: 19457607
- Kircelli, F.; Akay, C.; Gazitt, Y. Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. Int. J. Oncol., 2007, 30(4), 993-1001. doi: 10.3892/ijo.30.4.993 PMID: 17332940
- Feng, J.; Tamaskovic, R.; Yang, Z.; Brazil, D.P.; Merlo, A.; Hess, D.; Hemmings, B.A. Stabilization of MDM2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J. Biol. Chem., 2004, 279(34), 35510-35517. doi: 10.1074/jbc.M404936200 PMID: 15169778
- Chang, K.J.; Yin, J.Z.; Huang, H.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell- maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl. Lung Cancer Res., 2020, 9(4), 1379-1396. doi: 10.21037/tlcr-20-467 PMID: 32953511
- Zheng, C.Y.; Lam, S.K.; Li, Y.Y.; Ho, J. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int. J. Oncol., 2015, 46(3), 1067-1078. doi: 10.3892/ijo.2015.2826 PMID: 25572414
- Cheng, Y.; Chang, L.W.; Tsou, T.C. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch. Toxicol., 2006, 80(6), 310-318. doi: 10.1007/s00204-005-0045-1 PMID: 16328441
- Mathieu, J.; Besançon, F. Clinically tolerable concentrations of arsenic trioxide induce p53-independent cell death and repress NF-κB activation in Ewing sarcoma cells. Int. J. Cancer, 2006, 119(7), 1723-1727. doi: 10.1002/ijc.21970 PMID: 16646077
Arquivos suplementares
