MDM2-mediated Inhibitory Effect of Arsenic Trioxide on Small Cell Lung Cancer Cell Line by Degrading Mutant p53

  • Авторлар: Wang Y.1, Yin J.1, Shi X.2, Zhao X.3, Li B.4, Yang M.5
  • Мекемелер:
    1. Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University
    2. Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University,
    3. Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine,, Tongji University
    4. Department of Respiratory and Critical Care Medicine, Changzheng Hospital,, Naval Medical University
    5. Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University,
  • Шығарылым: Том 23, № 16 (2023)
  • Беттер: 1829-1837
  • Бөлім: Oncology
  • URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694356
  • DOI: https://doi.org/10.2174/1871520623666230530095435
  • ID: 694356

Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:Small cell lung cancer (SCLC) is featured by a high TP53 mutant rate. Our previous research found that arsenic trioxide (As2O3) could significantly inhibit the growth and metastasis of SCLC. Studies have shown that the degradation of mutant p53 mediated by murine double minute 2 (MDM2) can be induced by As2O3, which probably contributes to the inhibition of SCLC, but the detailed mechanism is still unclear. We aimed to testify that As2O3 can inhibit the growth of SCLC cells by degrading mutant p53 protein via binding to MDM2.

Methods: CCK-8 assay, cell cycle analysis, and western blot of apoptosis markers were used to evaluate the inhibitory effect of As2O3 on NCI-H446 cells (containing mutant p53) and NCI-H1299 cells (p53 null). The effects of As2O3 on p53 and its downstream proteins were identified by western blot using mut-p53-knockdown and overexpressed cell models. MDM2-knockdown cell models were constructed, and western blot, co-IP of mut-p53, and ubiquitin were carried out to explore the mediating effect of MDM2 in As2O3 induced mut-p53 degradation.

Results: As2O3 inhibited proliferation and induced cell cycle arrest and apoptosis of SCLC cells in a dose- and timedependent manner. After mut-p53 knockdown or overexpressed, the inhibitory effect of As2O3 was dampened or enhanced. Additionally, As2O3-induced mut-p53 ubiquitination was significantly weakened after MDM2 knockdown.

Conclusion: As2O3 could inhibit SCLC cells by inhibiting proliferation and inducing cell cycle arrest and apoptosis. These inhibitory effects were achieved at least in part by upregulating MDM2, which, in turn, promotes ubiquitination and degradation of mut-p53.

Негізгі сөздер

Авторлар туралы

Yu-Sheng Wang

Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University

Email: info@benthamscience.net

Ji-Zhong Yin

Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University

Email: info@benthamscience.net

Xiao-Qian Shi

Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University,

Email: info@benthamscience.net

Xue-Wei Zhao

Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine,, Tongji University

Email: info@benthamscience.net

Bing Li

Department of Respiratory and Critical Care Medicine, Changzheng Hospital,, Naval Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Meng-Hang Yang

Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387. doi: 10.1016/j.jtho.2021.11.003 PMID: 34808341
  2. Bernhardt, E.B.; Jalal, S.I. Small cell lung cancer. Cancer Treat. Res., 2016, 170, 301-322. doi: 10.1007/978-3-319-40389-2_14 PMID: 27535400
  3. Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: What we know, what we need to know and the path forward. Nat. Rev. Cancer, 2017, 17(12), 725-737. doi: 10.1038/nrc.2017.87 PMID: 29077690
  4. Levine, A.J.; Hu, W.; Feng, Z. The P53 pathway: What questions remain to be explored? Cell Death Differ., 2006, 13(6), 1027-1036. doi: 10.1038/sj.cdd.4401910 PMID: 16557269
  5. Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell, 2009, 137(3), 413-431. doi: 10.1016/j.cell.2009.04.037 PMID: 19410540
  6. Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer, 2009, 9(10), 749-758. doi: 10.1038/nrc2723 PMID: 19776744
  7. George, J.; Lim, J.S.; Jang, S.J.; Cun, Y. Ozretić L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; Müller, C.; Dahmen, I.; Jahchan, N.S.; Park, K.S.; Yang, D.; Karnezis, A.N.; Vaka, D.; Torres, A.; Wang, M.S.; Korbel, J.O.; Menon, R.; Chun, S.M.; Kim, D.; Wilkerson, M.; Hayes, N.; Engelmann, D.; Pützer, B.; Bos, M.; Michels, S.; Vlasic, I.; Seidel, D.; Pinther, B.; Schaub, P.; Becker, C.; Altmüller, J.; Yokota, J.; Kohno, T.; Iwakawa, R.; Tsuta, K.; Noguchi, M.; Muley, T.; Hoffmann, H.; Schnabel, P.A.; Petersen, I.; Chen, Y.; Soltermann, A.; Tischler, V.; Choi, C.; Kim, Y.H.; Massion, P.P.; Zou, Y.; Jovanovic, D.; Kontic, M.; Wright, G.M.; Russell, P.A.; Solomon, B.; Koch, I.; Lindner, M.; Muscarella, L.A.; la Torre, A.; Field, J.K.; Jakopovic, M.; Knezevic, J.; Castaños-Vélez, E.; Roz, L.; Pastorino, U.; Brustugun, O.T.; Lund-Iversen, M.; Thunnissen, E.; Köhler, J.; Schuler, M.; Botling, J.; Sandelin, M.; Sanchez-Cespedes, M.; Salvesen, H.B.; Achter, V.; Lang, U.; Bogus, M.; Schneider, P.M.; Zander, T.; Ansén, S.; Hallek, M.; Wolf, J.; Vingron, M.; Yatabe, Y.; Travis, W.D.; Nürnberg, P.; Reinhardt, C.; Perner, S.; Heukamp, L.; Büttner, R.; Haas, S.A.; Brambilla, E.; Peifer, M.; Sage, J.; Thomas, R.K. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563), 47-53. doi: 10.1038/nature14664 PMID: 26168399
  8. Hayashi, Y.; Tsujii, M.; Kodama, T.; Akasaka, T.; Kondo, J.; Hikita, H.; Inoue, T.; Tsujii, Y.; Maekawa, A.; Yoshii, S.; Shinzaki, S.; Watabe, K.; Tomita, Y.; Inoue, M.; Tatsumi, T.; Iijima, H.; Takehara, T. p53 functional deficiency in human colon cancer cells promotes fibroblast-mediated angiogenesis and tumor growth. Carcinogenesis, 2016, 37(10), 972-984. doi: 10.1093/carcin/bgw085 PMID: 27520561
  9. Molchadsky, A.; Rotter, V. p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis, 2017, 38(4), 347-358. doi: 10.1093/carcin/bgw092 PMID: 28334334
  10. Stiewe, T.; Haran, T.E. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist. Updat., 2018, 38, 27-43. doi: 10.1016/j.drup.2018.05.001 PMID: 29857816
  11. Chen, G.Q.; Shi, X.G.; Tang, W.; Xiong, S.M.; Zhu, J.; Cai, X.; Han, Z.G.; Ni, J.H.; Shi, G.Y.; Jia, P.M.; Liu, M.M.; He, K.L.; Niu, C.; Ma, J.; Zhang, P.; Zhang, T.D.; Paul, P.; Naoe, T.; Kitamura, K.; Miller, W.; Waxman, S.; Wang, Z.Y.; de The, H.; Chen, S.J.; Chen, Z. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood, 1997, 89(9), 3345-3353. PMID: 9129041
  12. Shi, X.Q.Y.; Huang, H.; Fang, Z.; Shi, Z.Q.; Tang, H.; Waxman, S.; Wang, Z.Y. Efficacy and mechanism of arsenic trioxide intrapleural injection in non-small cell lung cancer patients with malignant pleural effusions. J. Intern. Med. Concepts. Pract., 2019, 14(2), 77-82.
  13. Xie, S.L.; Yang, M.H.; Chen, K.; Huang, H.; Zhao, X.W.; Zang, Y.S.; Li, B. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem. Biophys., 2015, 71(3), 1325-1333. doi: 10.1007/s12013-014-0352-3 PMID: 25413961
  14. Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566. doi: 10.2174/1568009614666140725090000 PMID: 25088040
  15. Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. BioMed Res. Int., 2019, 2019, 1-9. doi: 10.1155/2019/4647252 PMID: 31093499
  16. Zheng, J.C.; Chang, K.J.; Jin, Y.X.; Zhao, X.W.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the metastasis of small cell lung cancer by blocking calcineurin-nuclear factor of activated t cells (NFAT) signaling. Med. Sci. Monit., 2019, 25, 2228-2237. doi: 10.12659/MSM.913091 PMID: 30913205
  17. Chang, K.J.; Yang, M.H.; Zheng, J.C.; Li, B.; Nie, W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am. J. Transl. Res., 2016, 8(2), 1133-1143. PMID: 27158399
  18. Schwaederlé, M.; Lazar, V.; Validire, P.; Hansson, J.; Lacroix, L.; Soria, J.C.; Pawitan, Y.; Kurzrock, R. VEGF-A expression correlates with TP53 mutations in non–small cell lung cancer: Implications for antiangiogenesis therapy. Cancer Res., 2015, 75(7), 1187-1190. doi: 10.1158/0008-5472.CAN-14-2305 PMID: 25672981
  19. Shinmen, N.; Koshida, T.; Kumazawa, T.; Sato, K.; Shimada, H.; Matsutani, T.; Iwadate, Y.; Takiguchi, M.; Hiwasa, T. Activation of NFAT signal by p53-K120R mutant. FEBS Lett., 2009, 583(12), 1916-1922. doi: 10.1016/j.febslet.2009.04.041 PMID: 19416725
  20. Yoon, J.W.; Lamm, M.; Iannaccone, S.; Higashiyama, N.; Leong, K.F.; Iannaccone, P.; Walterhouse, D. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. DNA Repair (Amst.), 2015, 34, 9-17. doi: 10.1016/j.dnarep.2015.06.006 PMID: 26282181
  21. Yan, W.; Jung, Y.S.; Zhang, Y.; Chen, X. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS One, 2014, 9(8), e103497. doi: 10.1371/journal.pone.0103497 PMID: 25116336
  22. Yan, W.; Zhang, Y.; Zhang, J.; Liu, S.; Cho, S.J.; Chen, X. Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression. J. Biol. Chem., 2011, 286(20), 17478-17486. doi: 10.1074/jbc.M111.231639 PMID: 21454520
  23. Chen, S.; Wu, J.L.; Liang, Y.; Tang, Y.G.; Song, H.X.; Wu, L.L.; Xing, Y.F.; Yan, N.; Li, Y.T.; Wang, Z.Y.; Xiao, S.J.; Lu, X.; Chen, S.J.; Lu, M. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell, 2021, 39(2), 225-239.e8. doi: 10.1016/j.ccell.2020.11.013
  24. Zhao, Y.; Yu, H.; Hu, W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin., 2014, 46(3), 180-189. doi: 10.1093/abbs/gmt147 PMID: 24389645
  25. Midgley, C.A.; Lane, D.P. p53 protein stability in tumour cells is not determined by mutation but is dependent on MDM2 binding. Oncogene, 1997, 15(10), 1179-1189. doi: 10.1038/sj.onc.1201459 PMID: 9294611
  26. Chou, R.H.; Huang, H. Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem. Biophys. Res. Commun., 2002, 293(1), 298-306. doi: 10.1016/S0006-291X(02)00212-7 PMID: 12054599
  27. Chen, X.; Zhang, M.; Liu, L.X. The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncol. Rep., 2009, 22(1), 73-80. PMID: 19513507
  28. Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr(III), Fe(III) and Cu(II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117700. doi: 10.1016/j.saa.2019.117700 PMID: 31748163
  29. Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct., 2021, 1242, 130693. doi: 10.1016/j.molstruc.2021.130693
  30. El‐Remaily, M.A.E.A.A.A. Rapidly, highly yielded and green synthesis of dihydrotetrazolo1,5‐apyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl. Organomet. Chem., 2021.
  31. Aljohani, S. Design, structural inspection of new bis(1H-benzodimidazol-2-yl)methanone complexes: Biomedical applications and theoretical implementations via DFT and docking approaches. Inorg. Chem. Commun., 2022, 72023, 110331.
  32. Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem., 2022, 97(C), 107643. doi: 10.1016/j.compbiolchem.2022.107643 PMID: 35189479
  33. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607. doi: 10.1038/nature11003 PMID: 22460905
  34. Byers, L.A.; Rudin, C.M. Small cell lung cancer: Where do we go from here? Cancer, 2015, 121(5), 664-672. doi: 10.1002/cncr.29098 PMID: 25336398
  35. Schulz-Heddergott, R.; Moll, U. Gain-of-Function (GOF) Mutant p53 as actionable therapeutic target. Cancers, 2018, 10(6), 188. doi: 10.3390/cancers10060188 PMID: 29875343
  36. Duffy, M.J. Targeting p53 for the treatment of cancer. Semin. Cancer Biol., 2020, 2022, 58-67. PMID: 32741700
  37. Zandi, R.; Selivanova, G.; Christensen, C.L.; Gerds, T.A.; Willumsen, B.M.; Poulsen, H.S. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin. Cancer Res., 2011, 17(9), 2830-2841. doi: 10.1158/1078-0432.CCR-10-3168 PMID: 21415220
  38. Gazitt, Y.; Akay, C. Arsenic trioxide: An anti cancer missile with multiple warheads. Hematology, 2005, 10(3), 205-213. doi: 10.1080/10245330500067090 PMID: 16019469
  39. Huang, C.; Ma, W.Y.; Li, J.; Dong, Z. Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res., 1999, 59(13), 3053-3058. PMID: 10397243
  40. Liu, Q.; Hilsenbeck, S.; Gazitt, Y. Arsenic trioxide–induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood, 2003, 101(10), 4078-4087. doi: 10.1182/blood-2002-10-3231 PMID: 12531793
  41. Akay, C.; Gazitt, Y. Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle, 2003, 2(4), 358-368. PMID: 12851490
  42. Boyko-Fabian, M.; Niehr, F.; Distel, L.; Budach, V.; Tinhofer, I. Increased growth-inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PLoS One, 2014, 9(6), e98867. doi: 10.1371/journal.pone.0098867 PMID: 24927258
  43. Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104. doi: 10.1101/cshperspect.a026104 PMID: 26931810
  44. Morsi, R.Z.; Hage-Sleiman, R.; Kobeissy, H.; Dbaibo, G. Noxa: Role in cancer pathogenesis and treatment. Curr. Cancer Drug Targets, 2018, 18(10), 914-928. doi: 10.2174/1568009618666180308105048 PMID: 29521234
  45. Chipuk, J.E.; Bouchier-Hayes, L.; Kuwana, T.; Newmeyer, D.D.; Green, D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 2005, 309(5741), 1732-1735. doi: 10.1126/science.1114297 PMID: 16151013
  46. Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.; Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998, 282(5393), 1497-1501. doi: 10.1126/science.282.5393.1497 PMID: 9822382
  47. Subhasree, N.; Jiangjiang, Q.; Kalkunte, S.; Minghai, W.; Ruiwen, Z. The MDM2-p53 pathway revisited. J. Biomed. Res., 2013, 27(4), 254-271. doi: 10.7555/JBR.27.20130030 PMID: 23885265
  48. Hamadeh, H.K.; Vargas, M.; Lee, E.; Menzel, D.B. Arsenic disrupts cellular levels of p53 and MDM2: A potential mechanism of carcinogenesis. Biochem. Biophys. Res. Commun., 1999, 263(2), 446-449. doi: 10.1006/bbrc.1999.1395 PMID: 10491313
  49. Huang, Y.; Zhang, J.; McHenry, K.T.; Kim, M.M.; Zeng, W.; Lopez-Pajares, V.; Dibble, C.C.; Mizgerd, J.P.; Yuan, Z.M. Induction of cytoplasmic accumulation of p53: A mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res., 2008, 68(22), 9131-9136. doi: 10.1158/0008-5472.CAN-08-3025 PMID: 19010883
  50. Halasi, M.; Pandit, B.; Gartel, A.L. Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle, 2014, 13(20), 3202-3206. doi: 10.4161/15384101.2014.950132 PMID: 25485499
  51. Zhu, H.B.; Yang, K.; Xie, Y.Q.; Lin, Y.W.; Mao, Q.Q.; Xie, L.P. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells. World J. Surg. Oncol., 2013, 11(1), 22. doi: 10.1186/1477-7819-11-22 PMID: 23356234
  52. Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360. doi: 10.1038/nrm.2017.20 PMID: 28429788
  53. Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21 WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci., 2000, 97(18), 10014-10019. doi: 10.1073/pnas.180316197 PMID: 10954755
  54. Jadhav, V.; Ray, P.; Sachdeva, G.; Bhatt, P. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci., 2016, 148, 41-52. doi: 10.1016/j.lfs.2016.02.042 PMID: 26883975
  55. Li, Y.; Qu, X.; Qu, J.; Zhang, Y.; Liu, J.; Teng, Y.; Hu, X.; Hou, K.; Liu, Y. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett., 2009, 284(2), 208-215. doi: 10.1016/j.canlet.2009.04.035 PMID: 19457607
  56. Kircelli, F.; Akay, C.; Gazitt, Y. Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. Int. J. Oncol., 2007, 30(4), 993-1001. doi: 10.3892/ijo.30.4.993 PMID: 17332940
  57. Feng, J.; Tamaskovic, R.; Yang, Z.; Brazil, D.P.; Merlo, A.; Hess, D.; Hemmings, B.A. Stabilization of MDM2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J. Biol. Chem., 2004, 279(34), 35510-35517. doi: 10.1074/jbc.M404936200 PMID: 15169778
  58. Chang, K.J.; Yin, J.Z.; Huang, H.; Li, B.; Yang, M.H. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell- maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl. Lung Cancer Res., 2020, 9(4), 1379-1396. doi: 10.21037/tlcr-20-467 PMID: 32953511
  59. Zheng, C.Y.; Lam, S.K.; Li, Y.Y.; Ho, J. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int. J. Oncol., 2015, 46(3), 1067-1078. doi: 10.3892/ijo.2015.2826 PMID: 25572414
  60. Cheng, Y.; Chang, L.W.; Tsou, T.C. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch. Toxicol., 2006, 80(6), 310-318. doi: 10.1007/s00204-005-0045-1 PMID: 16328441
  61. Mathieu, J.; Besançon, F. Clinically tolerable concentrations of arsenic trioxide induce p53-independent cell death and repress NF-κB activation in Ewing sarcoma cells. Int. J. Cancer, 2006, 119(7), 1723-1727. doi: 10.1002/ijc.21970 PMID: 16646077

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023