Design of Novel Imidazopyrazine Derivative against Breast Cancer via Targeted NPY1R Antagonist


Цитировать

Полный текст

Аннотация

Introduction:Breast cancer is the most frequent malignancy in women with more than one in ten new cancer diagnoses each year. Synthetic products are a key source for the identification of new anticancer medicines and drug leads.

Objectives: Imidazopyrazine is a highly favored skeleton for the design of new anticancer drugs. In silico designed derivatives were screened using computer aided drug design techniques and validated using MTT assay.

Methods: A template-based methodology was used in the current work to create novel Imidazopyrazine derivatives, targeting the NPY1R protein. Molecular docking, Diffusion docking, MD simulation, MM-GBSA and meta-dynamics techniques were followed. MTT assay was performed to validate the activity of principal compound.

Results: A docking score of -6.660 and MMGBSA value of -108.008 (+/-) 9.14 kcal/mol was obtained from the investigations conducted. In addition, molecular dynamics simulation was carried out for 500 ns, yielding a stable RMSD and value of 5.6 Å, thus providing insights on the stability of the protein conformation on interaction with the principal compound. Furthermore, the in vivo validation studies conducted via MTT assay showed an IC50 value of 73.45 (+/-) 0.45 µg /mL.

Conclusion: The research has produced encouraging findings and can be applied as a model for precise enumerations in the future. It also encourages the study of novel synthetic compounds with potential anti-cancer properties.

Об авторах

Vidya Niranjan

Department of Biotechnology, R V College of Engineering

Автор, ответственный за переписку.
Email: info@benthamscience.net

Vibha R

Department of Biotechnology, R V College of Engineering

Email: info@benthamscience.net

Sarah Philip

Department of Biotechnology, R V College of Engineering

Email: info@benthamscience.net

Akshay Uttarkar

Department of Biotechnology, R V College of Engineering

Email: info@benthamscience.net

Raviraj Kusanur

Department of Chemistry, R V College of Engineering

Email: info@benthamscience.net

Jitendra Kumar

, Bangalore Bioinnovation Centre

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Ferguson, T.F.; Kumar, S.; Danos, D. Abstract P148: Heart disease among breast cancer patients. Circulation, 2018, 137(S1), AP148.
  2. Muchtaridi, M.; Jajuli, M.; Yusuf, M. Antagonistic mechanism of chalcone derivatives against human estrogen alpha of breast cancer using molecular dynamic simulation. Orient. J. Chem., 2018, 34(6), 2735-2741. doi: 10.13005/ojc/340607
  3. Sharma, P.; LaRosa, C.; Antwi, J.; Govindarajan, R.; Werbovetz, K.A. Imidazoles as potential anticancer agents: An update on recent studies. Molecules, 2021, 26(14), 4213. doi: 10.3390/molecules26144213 PMID: 34299488
  4. Khoogar, R.; Kim, B.C.; Morris, J.; Wargovich, M.J. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: A focus on gastrointestinal cancer. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(9), G629-G644. doi: 10.1152/ajpgi.00201.2015 PMID: 26893159
  5. Bouloc, N.; Large, J.M.; Kosmopoulou, M.; Sun, C.; Faisal, A.; Matteucci, M.; Reynisson, J.; Brown, N.; Atrash, B.; Blagg, J.; McDonald, E.; Linardopoulos, S.; Bayliss, R.; Bavetsias, V. Structure-based design of imidazo1,2-apyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorg. Med. Chem. Lett., 2010, 20(20), 5988-5993. doi: 10.1016/j.bmcl.2010.08.091 PMID: 20833547
  6. Hatti, I.; Sreenivasulu, R.; Jadav, S.S.; Ahsan, M.J.; Raju, R.R. Synthesis and biological evaluation of 1,3,4-oxadiazole-linked bisindole derivatives as anticancer agents. Monatsh. fur Chem, 2015, 146(10), 1699-1705.
  7. Myadaraboina, S.; Alla, M.; Parlapalli, A.; Manda, S. Novel Imidazo 1, 2-a Pyrazine Derivatives: design, synthesis, antioxidant and antimicrobial evaluations. Int. J. Chem. Sci., 2018, 16(3), 276.
  8. Kang, S.J.; Lee, J.W.; Chung, S.H.; Jang, S.Y.; Choi, J.; Suh, K.H.; Kim, Y.H.; Ham, Y.J.; Min, K.H. Synthesis and anti-tumor activity of imidazopyrazines as TAK1 inhibitors. Eur. J. Med. Chem., 2019, 163, 660-670. doi: 10.1016/j.ejmech.2018.12.025 PMID: 30576901
  9. Takiyyuddin, M.A.; Brown, M.R.; Dinh, T.Q.; Cervenka, J.H.; Braun, S.D.; Parmer, R.J.; Kennedy, B.; O'Connor, D.T. Sympatho-adrenal secretion in humans: Factors governing catecholamine and storage vesicle peptide co-release. J. Auton. Pharmacol., 1994, 14(3), 187-200. doi: 10.1111/j.1474-8673.1994.tb00601.x PMID: 7929473
  10. Díaz-Cabiale, Z.; Parrado, C.; Rivera, A.; de la Calle, A.; Agnati, L.; Fuxe, K.; Narváez, J.A.; Galanin-neuropeptide, Y. (NPY) interactions in central cardiovascular control: Involvement of the NPY Y1 receptor subtype. Eur. J. Neurosci., 2006, 24(2), 499-508. doi: 10.1111/j.1460-9568.2006.04937.x PMID: 16903855
  11. DelTondo, J.; Por, I.; Hu, W.; Merchenthaler, I.; Semeniken, K.; Jojart, J.; Dudas, B. Associations between the human growth hormone-releasing hormone- and neuropeptide-Y-immunoreactive systems in the human diencephalon: A possible morphological substrate of the impact of stress on growth. Neuroscience, 2008, 153(4), 1146-1152. doi: 10.1016/j.neuroscience.2008.02.072 PMID: 18423883
  12. Zhou, Z.; Zhu, G.; Hariri, A.R.; Enoch, M.A.; Scott, D.; Sinha, R.; Virkkunen, M.; Mash, D.C.; Lipsky, R.H.; Hu, X.Z.; Hodgkinson, C.A.; Xu, K.; Buzas, B.; Yuan, Q.; Shen, P.H.; Ferrell, R.E.; Manuck, S.B.; Brown, S.M.; Hauger, R.L.; Stohler, C.S.; Zubieta, J.K.; Goldman, D. Genetic variation in human NPY expression affects stress response and emotion. Nature, 2008, 452(7190), 997-1001. doi: 10.1038/nature06858 PMID: 18385673
  13. Farzi, A.; Hassan, A.M.; Zenz, G.; Holzer, P. Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol. Aspects Med., 2019, 66, 80-93. doi: 10.1016/j.mam.2018.11.003 PMID: 30513310
  14. Zhang, L.; Bijker, M.S.; Herzog, H. The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther., 2011, 131(1), 91-113. doi: 10.1016/j.pharmthera.2011.03.011 PMID: 21439311
  15. Park, C.; Kim, J.; Ko, S.B.; Choi, Y.K.; Jeong, H.; Woo, H.; Kang, H.; Bang, I.; Kim, S.A.; Yoon, T.Y.; Seok, C.; Im, W.; Choi, H.J. Structural basis of neuropeptide Y signaling through Y1 receptor. Nat. Commun., 2022, 13(1), 853-853. doi: 10.1038/s41467-022-28510-6 PMID: 35165283
  16. Bhat, R.; Vasaikar, S.; Bae, L.; Carmine, D.A.; Cataldo, M.L.; Nanda, S.; Zhang, B.; Schiff, R.; Trivedi, M.V. Abstract 1926: Npy1r as a prognostic marker and a novel drug target in estrogen receptor-positive breast cancer. Cancer Res., 2018, 78(13), 1926-1926. doi: 10.1158/1538-7445.AM2018-1926
  17. Wittrisch, S.; Klöting, N.; Mörl, K.; Chakaroun, R.; Blüher, M.; Beck-Sickinger, A.G. NPY1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol. Metab., 2020, 31, 163-180. doi: 10.1016/j.molmet.2019.11.009 PMID: 31918918
  18. Dawoud, M.M.; Abdelaziz, K.K.E.; Alhanafy, A.M.; Ali, M.S.E.d.; Elkhouly, E.A.B. Clinical significance of immunohistochemical expression of neuropeptide Y1 receptor in patients with breast cancer in Egypt. Applied Immunohistochemistry &amp. Molecular Morphology, 2020, 29(4), 277-286.
  19. Taylor, I.L. Pancreatic polypeptide family: Pancreatic polypeptide, neuropeptide Y, and peptide YY. In: Comprehensive Physiology; Wiley: Hoboken, New Jersey, 1989; pp. 475-543. doi: 10.1002/cphy.cp060221
  20. Körner, M.; Waser, B.; Reubi, J.C. High expression of neuropeptide Y1 receptors in ewing sarcoma tumors. Clin. Cancer Res., 2008, 14(16), 5043-5049. doi: 10.1158/1078-0432.CCR-07-4551 PMID: 18698022
  21. Sheriff, S.; Ali, M.; Yahya, A.; Haider, K.H.; Balasubramaniam, A.; Amlal, H. Neuropeptide Y Y5 receptor promotes cell growth through extracellular signal-regulated kinase signaling and cyclic AMP inhibition in a human breast cancer cell line. Mol. Cancer Res., 2010, 8(4), 604-614. doi: 10.1158/1541-7786.MCR-09-0301 PMID: 20332211
  22. Amlal, H.; Faroqui, S.; Balasubramaniam, A.; Sheriff, S. Estrogen up-regulates neuropeptide Y Y1 receptor expression in a human breast cancer cell line. Cancer Res., 2006, 66(7), 3706-3714. doi: 10.1158/0008-5472.CAN-05-2744 PMID: 16585197
  23. Medeiros, P.J.; Al-Khazraji, B.K.; Novielli, N.M.; Postovit, L.M.; Chambers, A.F.; Jackson, D.N. Neuropeptide Y stimulates proliferation and migration in the 4T1 breast cancer cell line. Int. J. Cancer, 2012, 131(2), 276-286. doi: 10.1002/ijc.26350 PMID: 21823118
  24. Guérin, B.; Dumulon-Perreault, V.; Tremblay, M.C.; Ait-Mohand, S.; Fournier, P.; Dubuc, C.; Authier, S.; Bénard, F. Lys(DOTA)4BVD15, a novel and potent neuropeptide Y analog designed for Y1 receptor-targeted breast tumor imaging. Bioorg. Med. Chem. Lett., 2010, 20(3), 950-953. doi: 10.1016/j.bmcl.2009.12.068 PMID: 20042335
  25. Liu, L.; Xu, Q.; Cheng, L.; Ma, C.; Xiao, L.; Xu, D.; Gao, Y.; Wang, J.; Song, H. NPY1R is a novel peripheral blood marker predictive of metastasis and prognosis in breast cancer patients. Oncol. Lett., 2015, 9(2), 891-896. doi: 10.3892/ol.2014.2721 PMID: 25624911
  26. Bhat, R.; Thangavel, H.; Abdulkareem, N.M.; Vasaikar, S.; De Angelis, C.; Bae, L.; Cataldo, M.L.; Nanda, S.; Fu, X.; Zhang, B.; Schiff, R.; Trivedi, M.V. NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer. Sci. Rep., 2022, 12(1), 1972-1972. doi: 10.1038/s41598-022-05949-7 PMID: 35121782
  27. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B.J.; Bosse, M.; Burkert, K.; Kögler, L.M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R.C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A.G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature, 2018, 556(7702), 520-524. doi: 10.1038/s41586-018-0046-x PMID: 29670288
  28. Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Res., 2007, 35, D301-D303. doi: 10.1093/nar/gkl971 PMID: 17142228
  29. Madhavi S, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234. doi: 10.1007/s10822-013-9644-8 PMID: 23579614
  30. Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604. doi: 10.1007/s10822-010-9349-1 PMID: 20354892
  31. Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691. doi: 10.1007/s10822-007-9133-z PMID: 17899391
  32. Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874. doi: 10.1021/acs.jctc.8b01026 PMID: 30768902
  33. Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296. doi: 10.1021/acs.jctc.5b00864 PMID: 26584231
  34. Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519. doi: 10.1021/ct900587b PMID: 26615687
  35. Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236. doi: 10.1021/ja9621760
  36. Jorgensen, W.L.; Tirado-Rives, J. The OPLS optimized potentials for liquid simulations potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110(6), 1657-1666. doi: 10.1021/ja00214a001 PMID: 27557051
  37. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196. doi: 10.1021/jm051256o PMID: 17034125
  38. Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759. doi: 10.1021/jm030644s PMID: 15027866
  39. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
  40. Goel, R.; Luxami, V.; Paul, K. Recent advances in development of imidazo1,2-apyrazines: synthesis, reactivity and their biological applications. Org. Biomol. Chem., 2015, 13(12), 3525-3555. doi: 10.1039/C4OB01380H PMID: 25563506
  41. Patagar, D.; Kusanur, R.; Sitwala, N.D.; Ghate, M.D.; Saravanakumar, S.; Nembenna, S.; Gediya, P.A. Synthesis of novel 4-substituted coumarins, docking studies, and DHODH inhibitory activity. J. Heterocycl. Chem., 2019, 56(10), 2761-2771. doi: 10.1002/jhet.3644
  42. Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A. Molecular dynamics: Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC '06, ACM Press, 2006.
  43. Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960. doi: 10.1021/jp003020w
  44. Uttarkar, A.; Kishore, A.P.; Srinivas, S.M.; Rangappa, S.; Kusanur, R.; Niranjan, V. Coumarin derivative as a potent drug candidate against triple negative breast cancer targeting the frizzled receptor of wingless-related integration site signaling pathway. J. Biomol. Struct. Dyn., 2023, 41(5), 1561-1573. PMID: 34984961
  45. Patagar, D.; Uttarkar, A.; Patra, S.M.; Patil, J.H.; Kusanur, R.; Niranjan, V.; Kumar, H.G.A. Spiro benzodiazepine substituted fluorocoumarins as potent anti-anxiety agents. Russ. J. Bioorganic Chem., 2021, 47(2), 390-398. doi: 10.1134/S1068162021020199
  46. Posch, H.A.; Hoover, W.G.; Vesely, F.J. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Phys. Rev. A Gen. Phys., 1986, 33(6), 4253-4265. doi: 10.1103/PhysRevA.33.4253 PMID: 9897167
  47. Mongan, J.; Simmerling, C.; McCammon, J.A.; Case, D.A.; Onufriev, A. Generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput., 2007, 3(1), 156-169. doi: 10.1021/ct600085e PMID: 21072141
  48. Grant, J.A.; Pickup, B.T.; Sykes, M.J.; Kitchen, C.A.; Nicholls, A. A simple formula for dielectric polarisation energies: The Sheffield Solvation Model. Chem. Phys. Lett., 2007, 441(1-3), 163-166. doi: 10.1016/j.cplett.2007.05.008
  49. Grant, J.A.; Pickup, B.T.; Sykes, M.J.; Kitchen, C.A.; Nicholls, A. The gaussian generalized born model: Application to small molecules. Phys. Chem. Chem. Phys., 2007, 9(35), 4913-4922. doi: 10.1039/b707574j PMID: 17912422
  50. Onufriev, A.V.; Case, D.A. Generalized born implicit solvent models for biomolecules. Annu. Rev. Biophys., 2019, 48(1), 275-296. doi: 10.1146/annurev-biophys-052118-115325 PMID: 30857399
  51. Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812. doi: 10.1002/prot.23106 PMID: 21905107
  52. Niranjan, V. Well-tempered Metadynamics protocol v2; ZappyLab, Inc., 2022. doi: 10.17504/protocols.io.b5fyq3pw
  53. Niranjan, V.; Uttarkar, A.; Murali, K.; Niranjan, S.; Gopal, J.; Kumar, J. Mycobacterium time-series genome analysis identifies AAC2′ as a potential drug target with naloxone showing potential bait drug synergism. Molecules, 2022, 27(19), 6150. doi: 10.3390/molecules27196150 PMID: 36234683
  54. Wang, J.; Ishchenko, A.; Zhang, W.; Razavi, A.; Langley, D. A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein–protein and protein–ligand binding potencies. Sci. Rep., 2022, 12(1), 2024-2024. doi: 10.1038/s41598-022-05875-8 PMID: 35132139
  55. Corso, G.; Stärk, H.; Jing, B.; Barzilay, R.; Jaakkola, T. DiffDock: Diffusion steps, twists, and turns for molecular docking. Biomolecules, 2022. Available from: http://arxiv.org/abs/2210.01776
  56. van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. In: Methods in Molecular Biology; Humana Press, 2011; pp. 237-245.
  57. National Center for Biotechnology Information PubChem Compound Summary for CID 133053543, Available from: https://pubchem.ncbi.nlm.nih.gov/compound/133053543 (Accessed on: 14 February, 2022).
  58. Pa, V.; Vijayaraghavareddy, P.; Uttarkar, A.; Dawane, A. D, S.; v, A.; Kc, B.; Niranjan, V.; Ms, S.; Cv, A.; Makarla, U.; Vemanna, R.S. Novel small molecules targeting bZIP23 TF improve stomatal conductance and photosynthesis under mild drought stress by regulating ABA. FEBS J., 2022, 289(19), 6058-6077. doi: 10.1111/febs.16461 PMID: 35445538
  59. Skariyachan, S.; Ravishankar, R.; Gopal, D.; Muddebihalkar, A.G.; Uttarkar, A.; Praveen, P.K.U.; Niranjan, V. Response regulator GacA and transcriptional activator RhlR proteins involved in biofilm formation of Pseudomonas aeruginosa are prospective targets for natural lead molecules: Computational modelling, molecular docking and dynamic simulation studies. Infect. Genet. Evol., 2020, 85, 104448. doi: 10.1016/j.meegid.2020.104448 PMID: 32622078
  60. Gopal, D.; Muddebihalkar, A.G.; Skariyachan, S. A.U, C.; Kaveramma, P.; Praveen, U.; Shankar, R.R.; Venkatesan, T.; Niranjan, V. Mitogen activated protein kinase-1 and cell division control protein-42 are putative targets for the binding of novel synthetic lead molecules: A therapeutic intervention against Candida albicans. J. Biomol. Struct. Dyn., 2019, 38(15), 4584-4599. doi: 10.1080/07391102.2019.1682053 PMID: 31625462
  61. Skariyachan, S.; Muddebihalkar, A.G.; Badrinath, V.; Umashankar, B.; Eram, D.; Uttarkar, A.; Niranjan, V. Natural epiestriol-16 act as potential lead molecule against prospective molecular targets of multidrug resistant Acinetobacter baumannii-Insight from in silico modelling and in vitro investigations. Infect. Genet. Evol., 2020, 82, 104314. doi: 10.1016/j.meegid.2020.104314 PMID: 32268193
  62. Uttarkar, A.; Niranjan, V. Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. Mol. Simul., 2022, 48(17), 1592-1603. doi: 10.1080/08927022.2022.2110271
  63. Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633. doi: 10.1021/ci4002475 PMID: 23988151
  64. Ahmad, S.; Bhanu, P.; Kumar, J.; Pathak, R.K.; Mallick, D.; Uttarkar, A.; Niranjan, V.; Mishra, V. Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid. Bioinformation, 2022, 18(3), 170-179. doi: 10.6026/97320630018170 PMID: 36518123
  65. Kitlinska, J.; Abe, K.; Kuo, L.; Pons, J.; Yu, M.; Li, L.; Tilan, J.; Everhart, L.; Lee, E.W.; Zukowska, Z.; Toretsky, J.A. Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Res., 2005, 65(5), 1719-1728. doi: 10.1158/0008-5472.CAN-04-2192 PMID: 15753367
  66. Ruscica, M.; Dozio, E.; Boghossian, S.; Bovo, G.; Martos Riaño, V.; Motta, M.; Magni, P. Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells. Endocrinology, 2006, 147(3), 1466-1473. doi: 10.1210/en.2005-0925 PMID: 16339211
  67. Lv, X.; Zhao, F.; Huo, X.; Tang, W.; Hu, B.; Gong, X.; Yang, J.; Shen, Q.; Qin, W. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma. Med. Oncol., 2016, 33(7), 70. doi: 10.1007/s12032-016-0785-1 PMID: 27262566
  68. Malvasi, A.; Cavallotti, C.; Nicolardi, G.; Pellegrino, M.; Dell'Edera, D.; Vergara, D.; Greco, M.; Kumakiri, J.; Tinelli, A. NT, NPY and PGP 9.5 presence in myomeytrium and in fibroid pseudocapsule and their possible impact on muscular physiology. Gynecol. Endocrinol., 2013, 29(2), 177-181. doi: 10.3109/09513590.2012.709682 PMID: 22849656
  69. Tang, T.; Hartig, C.; Chen, Q.; Zhao, W.; Kaiser, A.; Zhang, X.; Zhang, H.; Qu, H.; Yi, C.; Ma, L.; Han, S.; Zhao, Q.; Beck-Sickinger, A.G.; Wu, B. Structural basis for ligand recognition of the neuropeptide Y Y2 receptor. Nat. Commun., 2021, 12(1), 737-737. doi: 10.1038/s41467-021-21030-9 PMID: 33531491
  70. Müller, C.; Gleixner, J.; Tahk, M.J.; Kopanchuk, S.; Laasfeld, T.; Weinhart, M.; Schollmeyer, D.; Betschart, M.U.; Lüdeke, S.; Koch, P.; Rinken, A.; Keller, M. Structure-based design of high-affinity fluorescent probes for the neuropeptide Y Y 1 receptor. J. Med. Chem., 2022, 65(6), 4832-4853. doi: 10.1021/acs.jmedchem.1c02033 PMID: 35263541
  71. Poindexter, G.S.; Bruce, M.A.; LeBoulluec, K.L.; Monkovic, I.; Martin, S.W.; Parker, E.M.; Iben, L.G.; McGovern, R.T.; Ortiz, A.A.; Stanley, J.A.; Mattson, G.K.; Kozlowski, M.; Arcuri, M.; Antal-Zimanyi, I.; Dihydropyridine, N.Y. Y1 Receptor antagonists. Bioorganic &amp. Medicinal Chemistry Letters, 2002, 12(3), 379-382. doi: 10.1016/S0960-894X(01)00761-2
  72. Shoblock, J.R.; Welty, N.; Nepomuceno, D.; Lord, B.; Aluisio, L.; Fraser, I.; Motley, S.T.; Sutton, S.W.; Morton, K.; Galici, R.; Atack, J.R.; Dvorak, L.; Swanson, D.M.; Carruthers, N.I.; Dvorak, C.; Lovenberg, T.W.; Bonaventure, P. in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-2-(diethylamino)-2-oxo-1-phenylethylpiperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y2 receptor. Psychopharmacology, 2009, 208(2), 265-277. doi: 10.1007/s00213-009-1726-x PMID: 19953226
  73. Parker, S.L.; Balasubramaniam, A.; Neuropeptide, Y. Neuropeptide Y Y2 receptor in health and disease. Br. J. Pharmacol., 2008, 153(3), 420-431. doi: 10.1038/sj.bjp.0707445 PMID: 17828288
  74. Brothers, S.P.; Wahlestedt, C. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol. Med., 2010, 2(11), 429-439. doi: 10.1002/emmm.201000100 PMID: 20972986

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023