First Approval of Pacritinib as a Selective Janus Associated Kinase-2 Inhibitor for the Treatment of Patients with Myelofibrosis
- Autores: De S.1
-
Afiliações:
- Department of Chemistry, Conju-Probe
- Edição: Volume 23, Nº 12 (2023)
- Páginas: 1355-1360
- Seção: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694307
- DOI: https://doi.org/10.2174/1871520623666230320120915
- ID: 694307
Citar
Texto integral
Resumo
Myelofibrosis is one kind of bone marrow blood cancer that gives mainly bone marrow scarring. JAK families include JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2) and they control hematopoiesis and immune cell function. JAK-STAT pathways have the critical roles in the pathogenesis of a variety of autoimmune and inflammatory diseases such as myelofibrosis. The 8 JAK inhibitors are approved by the US FDA for the treatment of various diseases. Abrocitinib, baricitinib, oclacitinib, ruxolitinib, tofacitinib, upadacitinib, fedratinib, and pactrinib with their IC50 values against JAK1, JAK2, JAK3, and TYK2 are included. All approved JAK inhibitors with structural similarities and dissimilarities are summarized. The development story of pacritinib and new design route to overcome intellectual property-related issues by connecting the A ring and C ring to form the macrocyclic compounds like 16 without compromising the binding modes in the hinge region are discussed. By using the powerful ring-closing metathesis (RCM), they designed and synthesized and delivered FDA approved pacritinib. In this short perspective, the chemical structure, physicochemical properties, mechanism of action, drug-interactions, adverse events, and pharmacokinetic profile of pacritinib are summarized. Detailed step by step synthesis of pacritinib is provided. Pacritinib is an orally bioavailable and isoform selective JAK-2 inhibitor for the treatment of patients with myelofibrosis. Detailed metabolism pathway with proper explanation is discussed.
Palavras-chave
Sobre autores
Surya De
Department of Chemistry, Conju-Probe
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Tefferi, A. Primary myelofibrosis: 2014 update on diagnosis, risk-stratification, and management. Am. J. Hematol., 2014, 89(9), 915-925. doi: 10.1002/ajh.23703 PMID: 25124313
- Finazzi, G.; Vannucchi, A.M.; Barbui, T. Prefibrotic myelofibrosis: Treatment algorithm 2018. Blood Cancer J., 2018, 8(11), 104. doi: 10.1038/s41408-018-0142-z PMID: 30405096
- Chou, J.M.; Li, C.Y.; Tefferi, A. Bone marrow immunohistochemical studies of angiogenic cytokines and their receptors in myelofibrosis with myeloid metaplasia. Leuk. Res., 2003, 27(6), 499-504. doi: 10.1016/S0145-2126(02)00268-0 PMID: 12648509
- Stein, B.L. JAK inhibition in myelofibrosis: how to sequence treatment in this new era of multiple options. Leuk. Lymphoma, 2022, 64(2), 1-8. doi: 10.1080/10428194.2022.2136970 PMID: 36301740
- Komrokji, R.S.; Seymour, J.F.; Roberts, A.W.; Wadleigh, M.; To, L.B.; Scherber, R.; Turba, E.; Dorr, A.; Zhu, J.; Wang, L.; Granston, T.; Campbell, M.S.; Mesa, R.A. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood, 2015, 125(17), 2649-2655. doi: 10.1182/blood-2013-02-484832 PMID: 25762180
- Mesa, R.A.; Vannucchi, A.M.; Mead, A.; Egyed, M.; Szoke, A.; Suvorov, A.; Jakucs, J.; Perkins, A.; Prasad, R.; Mayer, J.; Demeter, J.; Ganly, P.; Singer, J.W.; Zhou, H.; Dean, J.P.; te Boekhorst, P.A.; Nangalia, J.; Kiladjian, J.J.; Harrison, C.N. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol., 2017, 4(5), e225-e236. doi: 10.1016/S2352-3026(17)30027-3 PMID: 28336242
- Mascarenhas, J.; Hoffman, R.; Talpaz, M.; Gerds, A.T.; Stein, B.; Gupta, V.; Szoke, A.; Drummond, M.; Pristupa, A.; Granston, T.; Daly, R.; Al-Fayoumi, S.; Callahan, J.A.; Singer, J.W.; Gotlib, J.; Jamieson, C.; Harrison, C.; Mesa, R.; Verstovsek, S. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis. JAMA Oncol., 2018, 4(5), 652-659. doi: 10.1001/jamaoncol.2017.5818 PMID: 29522138
- Salit, R.B. The role of JAK inhibitors in hematopoietic cell transplantation. Bone Marrow Transplant., 2022, 57(6), 857-865. doi: 10.1038/s41409-022-01649-y PMID: 35388118
- Roskoski, R. Jr Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol. Res., 2022, 183, 106362. doi: 10.1016/j.phrs.2022.106362 PMID: 35878738
- William, A.D.; Lee, A.C.H.; Blanchard, S.; Poulsen, A.; Teo, E.L.; Nagaraj, H.; Tan, E.; Chen, D.; Williams, M.; Sun, E.T.; Goh, K.C.; Ong, W.C.; Goh, S.K.; Hart, S.; Jayaraman, R.; Pasha, M.K.; Ethirajulu, K.; Wood, J.M.; Dymock, B.W. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetra-cyclo19.3.1.1(2,6).1(8,12)heptacosa-1(25),2(26),3,5,8,10,12(27), 16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. J. Med. Chem., 2011, 54(13), 4638-4658. doi: 10.1021/jm200326p PMID: 21604762
- Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jussif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis -3-Methyl(7 H -pyrrolo2,3- dpyrimidin-4-yl)aminocyclobutylpropane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem., 2018, 61(3), 1130-1152. doi: 10.1021/acs.jmedchem.7b01598 PMID: 29298069
- Davis, R.R.; Li, B.; Yun, S.Y.; Chan, A.; Nareddy, P.; Gunawan, S.; Ayaz, M.; Lawrence, H.R.; Reuther, G.W.; Lawrence, N.J.; Schönbrunn, E. Structural insights into JAK2 inhibition by ruxolitinib, fedratinib, and derivatives thereof. J. Med. Chem., 2021, 64(4), 2228-2241. doi: 10.1021/acs.jmedchem.0c01952 PMID: 33570945
- Harrison, C.; Kiladjian, J.J.; Al-Ali, H.K.; Gisslinger, H.; Waltzman, R.; Stalbovskaya, V.; McQuitty, M.; Hunter, D.S.; Levy, R.; Knoops, L.; Cervantes, F.; Vannucchi, A.M.; Barbui, T.; Barosi, G. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med., 2012, 366(9), 787-798. doi: 10.1056/NEJMoa1110556 PMID: 22375970
- Williams, N.K.; Bamert, R.S.; Patel, O.; Wang, C.; Walden, P.M.; Wilks, A.F.; Fantino, E.; Rossjohn, J.; Lucet, I.S. Dissecting specificity in the Janus kinases: The structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol., 2009, 387(1), 219-232. doi: 10.1016/j.jmb.2009.01.041 PMID: 19361440
- Rubbert-Roth, A.; Enejosa, J.; Pangan, A.L.; Haraoui, B.; Rischmueller, M.; Khan, N.; Zhang, Y.; Martin, N.; Xavier, R.M. Trial of upadacitinib or abatacept in rheumatoid arthritis. N. Engl. J. Med., 2020, 383(16), 1511-1521. doi: 10.1056/NEJMoa2008250 PMID: 33053283
- Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.P.; Boggon, T.J.; Wlodarska, I.; Clark, J.J.; Moore, S.; Adelsperger, J.; Koo, S.; Lee, J.C.; Gabriel, S.; Mercher, T.; D'Andrea, A.; Fröhling, S.; Döhner, K.; Marynen, P.; Vandenberghe, P.; Mesa, R.A.; Tefferi, A.; Griffin, J.D.; Eck, M.J.; Sellers, W.R.; Meyerson, M.; Golub, T.R.; Lee, S.J.; Gilliland, D.G. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell, 2005, 7(4), 387-397. doi: 10.1016/j.ccr.2005.03.023 PMID: 15837627
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; Scott, M.A.; Erber, W.N.; Green, A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 2005, 365(9464), 1054-1061. doi: 10.1016/S0140-6736(05)71142-9 PMID: 15781101
- James, C.; Ugo, V.; Le Couédic, J.P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; Villeval, J.L.; Constantinescu, S.N.; Casadevall, N.; Vainchenker, W. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 2005, 434(7037), 1144-1148. doi: 10.1038/nature03546 PMID: 15793561
- Blanchard, S.; Lee, C.H.A.; Nagaraj, H.K.M.; Poulsen, A.; Sun, E.T.; Tan, Y.L.E.; William, A.D. Oxygen linked pyrimidine derivatives. US8415338B2, 2013.
- Jayaraman, R.; Pasha, M.; Williams, A.; Goh, K.; Ethirajulu, K. Metabolism and disposition of pacritinib (SB1518), an orally active janus kinase 2 inhibitor in preclinical species and humans. Drug Metab. Lett., 2015, 9(1), 28-47. doi: 10.2174/1872312809666150119105250 PMID: 25600203
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics, 2022, 14(5), 1001. doi: 10.3390/pharmaceutics14051001 PMID: 35631587
- Cafardi, J.; Miller, C.; Terebelo, H.; Tewell, C.; Benzaquen, S.; Park, D.; Egan, P.; Lebovic, D.; Pettit, K.; Whitman, E.; Tremblay, D.; Feld, J.; Buckley, S.; Roman-Torres, K.; Smith, J.; Craig, A.; Mascarenhas, J. Efficacy and safety of pacritinib vs placebo for patients with severe COVID-19. JAMA Netw. Open, 2022, 5(12), e2242918. doi: 10.1001/jamanetworkopen.2022.42918 PMID: 36469321
Arquivos suplementares
