Quinacrine Inhibits Hepatocellular Carcinoma Growth and Enhances the Anti-HCC Effects of Lenvatinib
- Authors: Yang H.1, Xu W.1, Xu B.2, Hu M.1
-
Affiliations:
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University
- Department of Clinical Medicine, Zunyi Medical University
- Issue: Vol 25, No 9 (2025)
- Pages: 603-609
- Section: Chemistry
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694516
- DOI: https://doi.org/10.2174/0118715206304652241105063112
- ID: 694516
Cite item
Full Text
Abstract
Background:Hepatocellular Carcinoma (HCC) is a highly prevalent cancer worldwide, necessitating effective treatment options. However, current treatments do not provide satisfactory results. Quinacrine, a synthetic drug belonging to the 9-aminoacridine family, has demonstrated promising antitumor effects.
Objective:The objective of the current study is to evaluate the anti-HCC effect of Quinacrine and explore whether quinacrine can improve the anti-HCC response of lenvatinib in vitro and in vivo.
Methods:The HepG2 and MHCC-97H cells were treated with Quinacrine. Cell proliferation and cell apoptosis were assessed using the Cell Counting Kit-8 (CCK8) Assay, Colony Formation Assay, and Annexin V/7-AAD staining method. The invasion and migratory ability of HepG2 and MHCC-97H cells were assessed by Transwell Assay. The level of ROS of HCC cells was measured using a ROS-kit by Flow cytometric analysis. Besides, an in vivo study was performed in the Balb/c nude mice bearing MHCC-97H tumors to analyze the function of Quinacrine in tumor growth.
Results:Quinacrine can decrease cell viability in HepG2 and MHCC-97H cells, but not affect LO2 cells. Quinacrine impaired the colony formation, invasion and migratory ability in half-maximal inhibitory concentration (IC50). Quinacrine also significantly induced apoptosis in HepG2 and MHCC-97H cells in a concentrationdependent manner. On the one hand, ROS was significantly up-regulated in HCC cells after quinacrine treatment. On the other hand, We found quinacrine blocked autophagy flux in HepG2 and MHCC-97H cells. Moreover, Quinacrine significantly enhances the anti-HCC efficacy of lenvatinib in vitro. In the mouse MHCC-97H model, We found that combination therapy with Quinacrine and lenvatinib resulted in a smaller tumor volume and weight than inoculated with lenvatinib alone.
Conclusion:Our findings demonstrated that quinacrine exerts anti-HCC effects and sensitizes hepatocellular carcinoma to lenvatinib. Collectively, our study provides novel therapeutic insights for managing HCC and offers a valuable strategy for future clinical interventions in this field.
About the authors
Hui Yang
Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University
Email: info@benthamscience.net
Weikang Xu
Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Binhe Xu
Department of Clinical Medicine, Zunyi Medical University
Email: info@benthamscience.net
Minli Hu
Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University
Email: info@benthamscience.net
References
- Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.H.; Chow, P.K.H.; Ngeow, J. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology, 2023, 164(5), 766-782. doi: 10.1053/j.gastro.2023.01.033 PMID: 36738977
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314. doi: 10.1016/j.bbcan.2019.188314 PMID: 31682895
- Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett., 2019, 460, 1-9. doi: 10.1016/j.canlet.2019.114428 PMID: 31207320
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6. doi: 10.1038/s41572-020-00240-3 PMID: 33479224
- Cucarull, B.; Tutusaus, A.; Rider, P.; Hernáez-Alsina, T.; Cuño, C.; García de Frutos, P.; Colell, A.; Marí, M.; Morales, A. Hepatocellular carcinoma: Molecular pathogenesis and therapeutic advances. Cancers (Basel), 2022, 14(3), 621. doi: 10.3390/cancers14030621 PMID: 35158892
- Fornari, F.; Giovannini, C.; Piscaglia, F.; Gramantieri, L. Elucidating the molecular basis of sorafenib resistance in HCC: Current findings and future directions. J. Hepatocell. Carcinoma, 2021, 8, 741-757. doi: 10.2147/JHC.S285726 PMID: 34239844
- Oien, D.B.; Pathoulas, C.L.; Ray, U.; Thirusangu, P.; Kalogera, E.; Shridhar, V. Repurposing quinacrine for treatment-refractory cancer. Semin. Cancer Biol., 2021, 68, 21-30. doi: 10.1016/j.semcancer.2019.09.021 PMID: 31562955
- Wang, Y.; Bi, Q.; Dong, L.; Li, X.; Ge, X.; Zhang, X.; Fu, J.; Wu, D.; Li, S. Quinacrine enhances cisplatin-induced cytotoxicity in four cancer cell lines. Chemotherapy, 2010, 56(2), 127-134. doi: 10.1159/000313525 PMID: 20407239
- Yang, C.; Zhang, H.; Zhang, L.; Zhu, A.X.; Bernards, R.; Qin, W.; Wang, C. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2023, 20(4), 203-222. doi: 10.1038/s41575-022-00704-9 PMID: 36369487
- Song, M.; Ma, L.; Shen, C.; Liu, W.; Zhang, P.; Bi, R.; Zhao, C. FGD5-AS1/miR-5590-3p/PINK1 induces Lenvatinib resistance in hepatocellular carcinoma. Cell. Signal., 2023, 111, 110828. doi: 10.1016/j.cellsig.2023.110828 PMID: 37517671
- Chen, Y.; Hu, H.; Yuan, X.; Fan, X.; Zhang, C. Advances in immune checkpoint inhibitors for advanced hepatocellular carcinoma. Front. Immunol., 2022, 13, 896752. doi: 10.3389/fimmu.2022.896752 PMID: 35757756
- Jin, H.; Shi, Y.; Lv, Y.; Yuan, S.; Ramirez, C.F.A.; Lieftink, C.; Wang, L.; Wang, S.; Wang, C.; Dias, M.H.; Jochems, F.; Yang, Y.; Bosma, A.; Hijmans, E.M.; de Groot, M.H.P.; Vegna, S.; Cui, D.; Zhou, Y.; Ling, J.; Wang, H.; Guo, Y.; Zheng, X.; Isima, N.; Wu, H.; Sun, C.; Beijersbergen, R.L.; Akkari, L.; Zhou, W.; Zhai, B.; Qin, W.; Bernards, R. EGFR activation limits the response of liver cancer to lenvatinib. Nature, 2021, 595(7869), 730-734. doi: 10.1038/s41586-021-03741-7 PMID: 34290403
- Zipper, J.; Dabancens, A.; Guerrero, A.; Trujillo, V. Quinacrine revised. Hum. Reprod. Update, 1995, 1(4), 324-342. doi: 10.1093/humupd/1.4.324 PMID: 9080211
- Etman, S.M.; Mehanna, R.A.; Bary, A.A.; Elnaggar, Y.S.R.; Abdallah, O.Y. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int. J. Biol. Macromol., 2021, 170, 284-297. doi: 10.1016/j.ijbiomac.2020.12.109 PMID: 33340624
- Lobo, M.R.; Green, S.C.; Schabel, M.C.; Gillespie, G.Y.; Woltjer, R.L.; Pike, M.M. Quinacrine synergistically enhances the antivascular and antitumor efficacy of cediranib in intracranial mouse glioma. Neuro-oncol., 2013, 15(12), 1673-1683. doi: 10.1093/neuonc/not119 PMID: 24092859
- Abdulghani, J.; Gokare, P.; Gallant, J.N.; Dicker, D.; Whitcomb, T.; Cooper, T.; Liao, J.; Derr, J.; Liu, J.; Goldenberg, D.; Finnberg, N.K.; El-Deiry, W.S. Sorafenib and quinacrine target anti-apoptotic protein MCL1: A poor prognostic marker in Anaplastic Thyroid Cancer (ATC). Clin. Cancer Res., 2016, 22(24), 6192-6203. doi: 10.1158/1078-0432.CCR-15-2792 PMID: 27307592
- Du, D.; Liu, C.; Qin, M.; Zhang, X.; Xi, T.; Yuan, S.; Hao, H.; Xiong, J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm. Sin. B, 2022, 12(2), 558-580. doi: 10.1016/j.apsb.2021.09.019 PMID: 35256934
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; Blanc, J.F.; Vogel, A.; Komov, D.; Evans, T.R.J.; Lopez, C.; Dutcus, C.; Guo, M.; Saito, K.; Kraljevic, S.; Tamai, T.; Ren, M.; Cheng, A.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet, 2018, 391(10126), 1163-1173. doi: 10.1016/S0140-6736(18)30207-1 PMID: 29433850
- Zhu, X.D.; Sun, H.C. Emerging agents and regimens for hepatocellular carcinoma. J. Hematol. Oncol., 2019, 12(1), 110. doi: 10.1186/s13045-019-0794-6 PMID: 31655607
- Zheng, Y.; Huang, C.; Lu, L.; Yu, K.; Zhao, J.; Chen, M.; Liu, L.; Sun, Q.; Lin, Z.; Zheng, J.; Chen, J.; Zhang, J. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J. Hematol. Oncol., 2021, 14(1), 16. doi: 10.1186/s13045-020-01029-3 PMID: 33446239
Supplementary files
