Discovery of a Novel Co-crystal of Chrysin and Oroxylin A with Anticancer Properties from Leaves of Oroxylum indicum


Cite item

Full Text

Abstract

Background:As the number of new cancer cases increases every year, there is a necessity to develop new drugs for the treatment of different types of cancers. Plants' resources are considered to be huge reservoirs for therapeutic agents in nature. Among all the medicinal plants, Oroxylum indicum is one of the most widely used medicinal plants in India, China, and Southeast Asian countries. Combinatorial drug treatment, on the other hand, is favored over single drug treatment in order to target multiple biomolecular moieties that help in the growth and development of cancer. Therefore, combinatorial drug treatment using a co-crystal of multiple drugs gives researchers an idea of the development of a new type of drug for targeting multiple targets. In this study, a new co-crystal of chrysin and oroxylin A was isolated from the leaves of O. indicum, and its anticancer properties were studied in cervical cancer cells HeLa.

Aim:This study was conducted with the aim of identifying new anticancer compounds from the leaves of Oroxylum indicum and studying the anticancer properties of the isolated compound.

Objective:In this study, we elucidated the structure of a new co-crystal compound, which was isolated from the leaf extract of Oroxylum indicum. The apoptosis induction mechanism of the newly discovered co-crystal in HeLa cells was also studied.

Methods:A crystal compound from the chloroform extract of leaves of Oroxylum Indicum was isolated by solvent fractionation and chromatographic methods involving HPLC. The molecular structure of the isolated crystal was elucidated by Single Crystal-XRD, FT-IR analysis, and further determined by LC-MS. The antiproliferative activity was carried out using an MTT assay and fluorescence microscopy, and the mechanism of apoptosis was determined using Western blotting techniques.

Results:The novel co-crystal consists of two active pharmaceutical ingredients (APIs) in a 1:1 ratio, i.e., oroxylin A and chrysin. The isolated new co-crystal induced death in HeLa cells with a very low IC50 value of 8.49 μM. It induced caspase-dependent apoptosis in HeLa cells by activation of Caspase-3 through inhibition of ERKs and activation of p38 of MAPK cell signalling pathway.

Conclusion:This study presents the first report on the discovery of a naturally occurring co-crystal of chrysin and oroxylin A and the involvement of ERKs and p38 of MAPK pathways in the induction of apoptosis in HeLa cells by the co-crystal. Our study sheds light on the development of a co-crystal of chrysin and oroxylin A in a specific ratio of 1:1 for combination therapy of the two APIs. The purified co-crystal was found to be more efficient compared to the compounds present individually. Further analysis of the physiochemical properties and molecular mechanisms of the isolated co-crystal in different cancer cells is warranted for its application in therapeutics.

About the authors

Salam Singh

Department of Biotechnology, Manipur University

Email: info@benthamscience.net

Asem Singh

Department of Biotechnology, Manipur University

Email: info@benthamscience.net

Atom Singh

Department of Chemistry, Manipur University

Email: info@benthamscience.net

Anoubam Devi

Department of Biotechnology, Manipur University

Email: info@benthamscience.net

Minhaz Korimayum

Department of Biotechnology, Manipur University

Email: info@benthamscience.net

Lisam Singh

Department of Biotechnology, Manipur University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ferlay, J. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020. doi: 10.1002/ijc.33588
  2. Guida, F.; Kidman, R.; Ferlay, J.; Schüz, J.; Soerjomataram, I.; Kithaka, B.; Ginsburg, O.; Mailhot Vega, R.B.; Galukande, M.; Parham, G.; Vaccarella, S.; Canfell, K.; Ilbawi, A.M.; Anderson, B.O.; Bray, F.; dos-Santos-Silva, I.; McCormack, V. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nat. Med., 2022, 28(12), 2563-2572. doi: 10.1038/s41591-022-02109-2 PMID: 36404355
  3. Ramírez, M.H.; López, K.G.; Carrancá, A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front. Pharmacol., 2021, 12, 710304. doi: 10.3389/fphar.2021.710304 PMID: 34744708
  4. Golmohammadi, M.; Zamanian, M.Y.; Jalal, S.M.; Noraldeen, S.A.M.; Ramírez-Coronel, A.A.; Oudaha, K.H.; Obaid, R.F.; Almulla, A.F.; Bazmandegan, G.; Kamiab, Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci. Nutr., 2023, 11(12), 7458-7468. doi: 10.1002/fsn3.3699 PMID: 38107139
  5. Guamán-Ortiz, L.; Orellana, M.; Ratovitski, E. Natural compounds as modulators of non-apoptotic cell death in cancer cells. Curr. Genomics, 2017, 18(2), 132-155. doi: 10.2174/1389202917666160803150639 PMID: 28367073
  6. Zamanian, M.Y.; Golmohammadi, M.; Yumashev, A.; Hjazi, A.; Toama, M.A. AbdRabou, M.A.; Gehlot, A.; Alwaily, E.R.; Shirsalimi, N.; Yadav, P.K.; Moriasi, G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem. Funct., 2024, 42(4), e4071. doi: 10.1002/cbf.4071 PMID: 38863255
  7. Khan, T. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47. doi: 10.3390/biom10010047
  8. Van Hasselt, J.C.; Iyengar, R.J.A. Systems pharmacology: Defining the interactions of drug combinations. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 21-40. doi: 10.1146/annurev-pharmtox-010818-021511
  9. Vakil, V.; Trappe, W.J.P. Drug combinations: Mathematical modeling and networking methods. Pharmaceutics, 2019, 11(5), 208. doi: 10.3390/pharmaceutics11050208
  10. Frantz, S.J.N. The trouble with making combination drugs. Nat. Rev. Drug Discov., 2006, 5, 881-882. doi: 10.1038/nrd2188
  11. Wang, X. Drug-drug cocrystals: Opportunities and challenges. Asian J. Pharm. Sci., 2021, 16(3), 307-317. doi: 10.1016/j.ajps.2020.06.004
  12. Kumar Bandaru, R.; Rout, S.R.; Kenguva, G.; Gorain, B.; Alhakamy, N.A.; Kesharwani, P.; Dandela, R. Recent advances in pharmaceutical cocrystals: From bench to market. Front. Pharmacol., 2021, 12, 780582. doi: 10.3389/fphar.2021.780582 PMID: 34858194
  13. Kara, D.D.; Rathnanand, M. Cocrystals and drug–drug cocrystals of anticancer drugs: A perception towards screening techniques, preparation, and enhancement of drug properties. Crystals, 2022, 12(10), 1337. doi: 10.3390/cryst12101337
  14. Singh, V.; Chaudhary, A.J.I.J. A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum Vent. Indian J. Pharm. Sci., 2011, 73(5), 483-490. doi: 10.4103/0250-474X.98981
  15. Wu, B.L.; Wu, Z-W.; Yang, F.; Shen, X-F.; Wang, L.; Chen, B.; Li, F.; Wang, M-K. Flavonoids from the seeds of Oroxylum indicum and their anti-inflammatory and cytotoxic activities. Phytochem. Lett., 2019, 32, 66-69. doi: 10.1016/j.phytol.2019.05.003
  16. Yan, R.; Cao, Y.; Chen, C.; Dai, H.; Yu, S.; Wei, J.; Li, H.; Yang, B. Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia, 2011, 82(6), 841-848. doi: 10.1016/j.fitote.2011.04.006 PMID: 21596112
  17. Chen, J.; Chen, J.; Lu, J. Systematic elucidation of the mechanism of Oroxylum indicum via network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020(1), 5354215. doi: 10.1155/2020/5354215 PMID: 32733583
  18. Dinda, B. SilSarma, I.; Dinda, M.; Rudrapaul, P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J. Ethnopharmacol., 2015, 161, 255-278. doi: 10.1016/j.jep.2014.12.027 PMID: 25543018
  19. Singh, A.R.; Singh, S.A.; Singh, T.D.; Singh, N.T.; Machathoibi, T.C.; Singh, O.M.; Singh, L.S. Bioassay-guided isolation of 2-p-(2-Carboxyhydrazino)phenoxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol from Oroxylum indicum and the investigation of its molecular mechanism action of apoptosis induction. Pharmaceuticals, 2022, 15(5), 559. doi: 10.3390/ph15050559 PMID: 35631385
  20. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(1), 112-122. doi: 10.1107/S0108767307043930 PMID: 18156677
  21. Renkoğlu, P.; Çelebier, M.; Yegin, A.B. HPLC determination of olanzapine and carbamazepine in their nicotinamide cocrystals and investigation of the dissolution profiles of cocrystal tablet formulations. Pharm. Dev. Technol., 2015, 20(3), 380-384. doi: 10.3109/10837450.2014.882937 PMID: 24521464
  22. Raina, R.; Afroze, N.; Kedhari Sundaram, M.; Haque, S.; Bajbouj, K.; Hamad, M.; Hussain, A. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2206-2220. doi: 10.26355/eurrev_202103_25253 PMID: 33755959
  23. Raina, R.; Hussain, A.; Almutary, A.G.; Haque, S.; Raza, T.; D’Souza, A.C.; Subramani, S.; Sajeevan, A. Co-administration of chrysin and luteolin with cisplatin and topotecan exhibits a variable therapeutic value in human cancer cells, HeLa. ACS Omega, 2023, 8(44), 41204-41213. doi: 10.1021/acsomega.3c04443 PMID: 37970041
  24. Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem., 2004, 12(23), 6097-6105. doi: 10.1016/j.bmc.2004.09.013 PMID: 15519155
  25. Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci., 2010, 11(5), 2188-2199. doi: 10.3390/ijms11052188 PMID: 20559509
  26. Pawar, J.S.; Mustafa, S.; Ghosh, I. Chrysin and Capsaicin induces premature senescence and apoptosis via mitochondrial dysfunction and p53 elevation in Cervical cancer cells. Saudi J. Biol. Sci., 2022, 29(5), 3838-3847. doi: 10.1016/j.sjbs.2022.03.011 PMID: 35844432
  27. Li, H.N.; Nie, F.F.; Liu, W.; Dai, Q.S.; Lu, N.; Qi, Q.; Li, Z.Y.; You, Q.D.; Guo, Q.L. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology, 2009, 257(1-2), 80-85. doi: 10.1016/j.tox.2008.12.011 PMID: 19135124
  28. Kiraly, G.; Simonyi, A.S.; Turani, M. Micronucleus formation during chromatin condensation and under apoptotic conditions. Apoptosis, 2017, 22(2), 207-219. doi: 10.1007/s10495-016-1316-4
  29. Bossy-Wetzel, E.; Green, D.R. Detection of apoptosis by annexin V labeling. In: Methods in enzymology; Elsevier; , 2000; pp. 15-18. doi: 10.1016/S0076-6879(00)22004-1
  30. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  31. Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med., 2020, 19(3), 1997-2007. doi: 10.3892/etm.2020.8454 PMID: 32104259
  32. Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol., 2020, 21(10), 607-632. doi: 10.1038/s41580-020-0255-7 PMID: 32576977
  33. Berra, E.; Diaz-Meco, M.T.; Moscat, J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J. Biol. Chem., 1998, 273(17), 10792-10797. doi: 10.1074/jbc.273.17.10792 PMID: 9553146
  34. Berra, E.; Municio, M.M.; Sanz, L.; Frutos, S.; Diaz-Meco, M.T.; Moscat, J. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol. Cell. Biol., 1997, 17(8), 4346-4354. doi: 10.1128/MCB.17.8.4346 PMID: 9234692
  35. Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270(5240), 1326-1331. doi: 10.1126/science.270.5240.1326 PMID: 7481820
  36. Yang, C.; Luo, J.; Luo, X.; Jia, W.; Fang, Z.; Yi, S.; Li, L. Morusin exerts anti-cancer activity in renal cell carcinoma by disturbing MAPK signaling pathways. Ann. Transl. Med., 2020, 8(6), 327. doi: 10.21037/atm.2020.02.107 PMID: 32355771
  37. Eid, W.; Abdel-Rehim, W. Neferine enhances the antitumor effect of mitomycin‐C in hela cells through the activation of p38‐MAPK pathway. J. Cell. Biochem., 2017, 118(10), 3472-3479. doi: 10.1002/jcb.26006 PMID: 28328092
  38. Yao, W.; Lin, Z.; Wang, G.; Li, S.; Chen, B.; Sui, Y.; Huang, J.; Liu, Q.; Shi, P.; Lin, X.; Liu, Q.; Yao, H. Delicaflavone induces apoptosis via mitochondrial pathway accompanying G2/M cycle arrest and inhibition of MAPK signaling cascades in cervical cancer HeLa cells. Phytomedicine, 2019, 62, 152973. doi: 10.1016/j.phymed.2019.152973 PMID: 31177019
  39. Thakuria, R.; Sarma, B.J.C. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: A crystal engineering approach. Crystals, 2018, 2, 101. doi: 10.3390/cryst8020101
  40. Kumbhar, P.; Kolekar, K. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J. Control. Release, 2023, 353, 1150-1170. doi: 10.1016/j.jconrel.2022.12.042
  41. Nascimento, A.L.; Fernandes, R.P. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement. Particuology, 2021, 58, 227-241. doi: 10.1016/j.partic.2021.03.015

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers