Pioneering a New Era in Oral Cancer Treatment with Electrospun Nanofibers: A Comprehensive Insight


Cite item

Full Text

Abstract

Oral cancer, currently ranked 16th among the most prevalent malignancies worldwide according to GLOBOCAN, presents significant challenges to global oral health. Conventional treatment modalities such as surgery, radiation, and chemotherapy often have limitations, prompting the need for innovative therapeutic approaches. Tissue engineering has emerged as a promising solution aimed at developing biocompatible, functional, and biologically responsive tissue constructs. This approach involves the integration of cells, bioactive compounds, and scaffolds to enhance treatment efficacy. Electrospun nanofibers, mimicking the extracellular matrix, exhibit considerable potential in addressing complex oral health issues by influencing cellular behavior. The versatility of electrospinning technology allows for the fabrication of fiber scaffolds with high surface area, making them ideal for localized delivery of bioactive compounds or pharmaceuticals. Enhancing these electrospun scaffolds with growth factors, nanoparticles, and biologically active substances significantly increases their therapeutic appeal in oral cancer management. This review offers a comprehensive examination of the various applications of electrospun nanofibers in oral cancer therapy. Utilizing electronic databases such as PubMed, CrossREF, and Google Scholar, we conducted an extensive review of relevant literature concerning "electrospun nanofibers" and their therapeutic potential in oral cancer treatment. Key topics addressed include engineering methodologies, drug diffusion mechanisms, factors influencing nanofiber scaffold design, toxicity concerns, and clinical implications. The findings underscore the transformative potential of electrospun nanofibers in revolutionizing oral cancer therapy.

About the authors

Devika Tripathi

Department of Pharmacy,, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Author for correspondence.
Email: info@benthamscience.net

Tanya Gupta

Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Awani Rai

Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Prashant Pandey

Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University

Email: info@benthamscience.net

References

  1. Pandey, P.; Arya, D.K.; Deepak, P.; Ali, D.; Alarifi, S.; Srivastava, S.; Lavasanifar, A.; Rajinikanth, P.S. αvβ3 integrin and folate-targeted pH-sensitive liposomes with dual ligand modification for metastatic breast cancer treatment. Bioengineering (Basel), 2024, 11(8), 800. doi: 10.3390/bioengineering11080800
  2. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588
  3. Lavudi, K.; Nuguri, S.M.; Pandey, P.; Kokkanti, R.R.; Wang, Q.E. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci., 2024, 356, 123033. doi: 10.1016/j.lfs.2024.123033
  4. Pandey, P.; Chaudhary, R.; Tripathi, D.; Lavudi, K.; Dua, K.; Weinfeld, M.; Lavasanifar, A.; Rajinikanth, P.S. Personalized treatment approach for HER2-positive metastatic breast cancer. Med. Oncol., 2024, 41(11), 252. doi: 10.1007/s12032-024-02504-4
  5. Bizuayehu, H.M.; Dadi, A.F.; Hassen, T.A.; Ketema, D.B.; Ahmed, K.Y.; Kassa, Z.Y.; Amsalu, E.; Kibret, G.D.; Alemu, A.A.; Alebel, A. Global burden of 34 cancers among women in 2020 and projections to 2040: Population‐based data from 185 countries/territories. Int. J. Cancer, 2024, 154(8), 1377-93.
  6. Tripathi, D.; Shukla, V.; Sahoo, J.; Sharma, D.K.; Shukla, T. Engineered tissue in cancer research: Techniques, challenges, and current status. Targeted cancer therapy in biomedical engineering; Springer, 2023, pp. 291-324. doi: 10.1007/978-981-19-9786-0_8
  7. Weinberg, R.A.; Robert, A. The biology of cancer; Garland Science: New York, 2014.
  8. Alves, D.; Araújo, J.C.; Fangueiro, R.; Ferreira, D.P. Localized therapeutic approaches based on micro/nanofibers for cancer treatment. Molecules, 2023, 28(7), 3053. doi: 10.3390/molecules28073053
  9. Filho, A.M.; Warnakulasuriya, S. Epidemiology of oral cancer in South and South‐East Asia: Incidence and mortality. Oral Dis., 2024, odi.14906. doi: 10.1111/odi.14906
  10. Shrestha, A.D.; Vedsted, P.; Kallestrup, P.; Neupane, D. Prevalence and incidence of oral cancer in low‐ and middle‐income countries: A scoping review. Eur. J. Cancer Care (Engl.), 2020, 29(2), e13207. doi: 10.1111/ecc.13207
  11. Mohammed, R.A.; Ahmed, S.K. Oral cancer screening: Past, present, and future perspectives. Oral Oncology Reports, 2024, 10, 100306. doi: 10.1016/j.oor.2024.100306
  12. Srivastava, D.; Pandey, P.; Tripathi, D.K.; Yadav, J.P.; Ali, B.; Singh, V.; Verma, A.; Mishra, A.; Kumar, D.; Mishra, A.; Rajinikanth, P.S. Tasar Silkworm Pupae oil: A potential therapeutic and edible lipid source to mitigate the oxidative stress and cholesterol complications associated with diabetes. Food and Humanity, 2024, 3, 100418. doi: 10.1016/j.foohum.2024.100418
  13. Prelec, J.; Laronde, D.M. Treatment modalities of oral cancer. Can. J. Dent. Hyg., 2014, 48, 13-19.
  14. Gharat, SA; Momin, MM; Bhavsar, C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(4), 363-400. doi: 10.1615/CritRevTherDrugCarrierSyst.2016016272
  15. Kumari, M.; Chhikara, B.S.; Singh, P.; Rathi, B.; Singh, G. Signaling and molecular pathways implicated in oral cancer: A concise review. Chem. Biol. Letters, 2024, 11(1), 652-652. doi: 10.62110/sciencein.cbl.2024.v11.652
  16. Pandey, P; Kumar Arya, D; Ramar, M.K.; Chidambaram, K; Rajinikanth, PS Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov. Today, 2022, 27(9), 2526-2540.
  17. Pandey, G.; Pandey, P.; Arya, D.K.; Kanaujiya, S.; Kapoor, D.D.; Gupta, R.K.; Ranjan, S.; Chidambaram, K.; Manickam, B.; Rajinikanth, P.S. Multilayered nanofibrous scaffold of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with hemostatic/antibacterial agents for rapid acute hemostatic wound healing. Int. J. Pharm., 2023, 638, 122918.
  18. Nanda, A; Pandey, P; Rajinikanth, P.S.; Singh, N. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation-A review. Int. J. Biol. Macromol., 2024, 129416.
  19. Anand, S.; Pandey, P.; Begum, M.Y.; Chidambaram, K.; Arya, D.K.; Gupta, R.K.; Sankhwar, R.; Jaiswal, S.; Thakur, S.; Rajinikanth, P.S. Electrospun biomimetic multifunctional nanofibers loaded with ferulic acid for enhanced antimicrobial and wound-healing activities in STZ-induced diabetic rats. Pharmaceuticals, 2022, 15, 302.
  20. Anand, S.; Rajinikanth, P.S.; Arya, D.K.; Pandey, P.; Gupta, R.K.; Sankhwar, R.; Chidambaram, K. Multifunctional biomimetic nanofibrous scaffold loaded with asiaticoside for rapid diabetic wound healing. Pharmaceutics, 2022, 14, 273.
  21. Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45(4-5), 309-316. doi: 10.1016/j.oraloncology.2008.06.002
  22. Singh, P.; Rajput, M.; Pandey, M. Tumor hypoxia and role of hypoxia-inducible factor in oral cancer. World J. Surg. Oncol., 2024, 22(1), 18. doi: 10.1186/s12957-023-03284-3
  23. Coletta, R.D.; Yeudall, W.A.; Salo, T. Grand challenges in oral cancers; Frontiers Media, SA, 2020, p. 3.
  24. Su, Y.F.; Chen, Y.J.; Tsai, F.T.; Li, W.C.; Hsu, M.L.; Wang, D.H.; Yang, C.C. Current insights into oral cancer diagnostics. Diagnostics (Basel), 2021, 11(7), 1287. doi: 10.3390/diagnostics11071287
  25. Ko, Y.C.; Huang, Y.L.; Lee, C.H.; Chen, M.J.; Lin, L.M.; Tsai, C.C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med., 1995, 24(10), 450-453. doi: 10.1111/j.1600-0714.1995.tb01132.x
  26. Zhou, Y.; Wang, M.; Yan, C.; Liu, H.; Yu, D.G. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers. Biomolecules, 2022, 12(9), 1254. doi: 10.3390/biom12091254
  27. Sharma, N.; Bhatia, S.; Singh, S.A.; Batra, N. Oral microbiome and health. AIMS Microbiol., 2018, 4(1), 42-66. doi: 10.3934/microbiol.2018.1.42
  28. Negri, E.; Franceschi, S.; Bosetti, C.; Levi, F.; Conti, E.; Parpinel, M.; La Vecchia, C. Selected micronutrients and oral and pharyngeal cancer. Int. J. Cancer, 2000, 86(1), 122-127. doi: 10.1002/(SICI)1097-0215(20000401)86:13.0.CO;2-2
  29. Tiwari, V.; Wilson, D.M., III DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet., 2019, 105(2), 237-257. doi: 10.1016/j.ajhg.2019.06.005
  30. Saberian, E.; Jenča, A.; Petrášová, A.; Jenčová, J.; Atazadegan Jahromi, R.; Seiffadini, R. Oral cancer at a glance. Asian Pacific J. Cancer Biol., 2023, 8(4), 379-386. doi: 10.31557/apjcb.2023.8.4.379-386
  31. Bagan, J.; Sarrion, G.; Jimenez, Y. Oral cancer: Clinical features. Oral Oncol., 2010, 46(6), 414-417. doi: 10.1016/j.oraloncology.2010.03.009
  32. Kawashita, Y.; Koyama, Y.; Kurita, H.; Otsuru, M.; Ota, Y.; Okura, M.; Horie, A.; Sekiya, H.; Umeda, M. Effectiveness of a comprehensive oral management protocol for the prevention of severe oral mucositis in patients receiving radiotherapy with or without chemotherapy for oral cancer: a multicentre, phase II, randomized controlled trial. Int. J. Oral Maxillofac. Surg., 2019, 48(7), 857-864. doi: 10.1016/j.ijom.2018.10.010
  33. Cohen, E.E.W.; Baru, J.; Huo, D.; Haraf, D.J.; Crowley, M.; Witt, M.E.; Blair, E.A.; Weichselbaum, R.R.; Rosen, F.; Vokes, E.E.; Stenson, K. Efficacy and safety of treating T4 oral cavity tumors with primary chemoradiotherapy. Head Neck, 2009, 31(8), 1013-1021. doi: 10.1002/hed.21062
  34. Liao, C.T.; Chang, J.T.C.; Wang, H.M.; Ng, S.H.; Hsueh, C.; Lee, L.Y.; Lin, C.H.; Chen, I.H.; Huang, S.F.; Cheng, A.J.; Yen, T-C. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann. Surg. Oncol., 2008, 15(3), 915-922. doi: 10.1245/s10434-007-9761-5
  35. Do, L.; Puthawala, A.; Syed, N. Interstitial brachytherapy as boost for locally advanced T4 head and neck cancer. Brachytherapy, 2009, 8(4), 385-391. doi: 10.1016/j.brachy.2009.03.191
  36. Grimard, L.; Esche, B.; Lamothe, A.; Spaans, J.N. Interstitial brachytherapy in the management of persistent head and neck disease after definitive external beam radiation therapy. Brachytherapy, 2009, 8(3), 284-289. doi: 10.1016/j.brachy.2008.12.007
  37. Borges, G.Á.; Rêgo, D.F.; Assad, D.X.; Coletta, R.D.; De Luca Canto, G.; Guerra, E.N.S. In vivo and in vitro effects of curcumin on head and neck carcinoma: A systematic review. J. Oral Pathol. Med., 2017, 46(1), 3-20. doi: 10.1111/jop.12455
  38. Global status report on alcohol and health. Available from: https://www.who.int/publications/i/item/global-status-report-on-alcohol-and-health-2014
  39. Marziliano, A.; Teckie, S.; Diefenbach, M.A. Alcohol‐related head and neck cancer: Summary of the literature. Head Neck, 2020, 42(4), 732-738. doi: 10.1002/hed.26023
  40. Shahriar, S.M.S.; Mondal, J.; Hasan, M.N.; Revuri, V.; Lee, D.Y.; Lee, Y.K. Electrospinning nanofibers for therapeutics delivery. Nanomaterials (Basel), 2019, 9(4), 532. doi: 10.3390/nano9040532
  41. Zielińska, A.; Karczewski, J.; Eder, P.; Kolanowski, T.; Szalata, M.; Wielgus, K.; Szalata, M.; Kim, D.; Shin, S.R.; Słomski, R.; Souto, E.B. Scaffolds for drug delivery and tissue engineering: The role of genetics. J. Control. Release, 2023, 359, 207-223. doi: 10.1016/j.jconrel.2023.05.042
  42. Fuhrmann, K.; Fuhrmann, G. Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr. Opin. Colloid Interface Sci., 2017, 31, 67-74. doi: 10.1016/j.cocis.2017.07.002
  43. Frenot, A.; Henriksson, M.W.; Walkenström, P. Electrospinning of cellulose‐based nanofibers. J. Appl. Polym. Sci., 2007, 103(3), 1473-1482. doi: 10.1002/app.24912
  44. Agarwal, Y.; Rajinikanth, P.S.; Ranjan, S.; Tiwari, U.; Balasubramnaiam, J.; Pandey, P.; Arya, D.K.; Anand, S.; Deepak, P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int. J. Biol. Macromol., 2021, 176, 376-386. doi: 10.1016/j.ijbiomac.2021.02.025
  45. Kanaujiya, S.; Arya, D.; Pandey, P.; Singh, S.; Pandey, G.; Anjum, S.; Anjum, M.M.; Ali, D.; Alarifi, S.; Mr, V.; Sivakumar, S.; Srivastava, S.; Rajinikanth, P.S. Resveratrol-Ampicillin dual-drug loaded Polyvinylpyrrolidone/Polyvinyl alcohol biomimic electrospun nanofiber enriched with collagen for efficient burn wound repair. Int. J. Nanomedicine, 2024, 19, 5397-5418. doi: 10.2147/IJN.S464046
  46. Tripathi, D; Sahoo, J; Sharma, DK; Raman, SK. Ecologically validated UV method for etodolac estimation in pharmaceutical formulation using green hydrotropic solution and forced degradation study for stability detection. LANS, 2022, 13(1), 14.
  47. Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today, 2019, 17, 1-35. doi: 10.1016/j.apmt.2019.06.015
  48. Yadav, S; Arya, DK; Pandey, P; Anand, S; Gautam, AK; Ranjan, S; Saraf, SA; Rajamanickam, V.M.; Singh, S.; Chidambaram, K.; Alqahtani, T. ECM mimicking biodegradable nanofibrous scaffold enriched with Curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity. Int. J. Nanomed., 2022, 17, 6843-6859.
  49. Anand, S; Rajinikanth, P; Pandey, P; Deepak, P; Thakur, S; Arya, D.K.; Jaiswal, S. Biomaterial-based nanofibers for drug delivery applications. In: Biomedical Research, Medicine, and Disease; CRC Press, 2023; pp. 531-546.
  50. Ding, Y.; Li, W.; Zhang, F.; Liu, Z.; Zanjanizadeh Ezazi, N.; Liu, D.; Santos, H.A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater., 2019, 29(2), 1802852. doi: 10.1002/adfm.201802852
  51. Teo, W.E.; Inai, R.; Ramakrishna, S. Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater., 2011, 12(1), 013002. doi: 10.1088/1468-6996/12/1/013002
  52. Sun, G.; Sun, L.; Xie, H.; Liu, J. Electrospinning of nanofibers for energy applications. Nanomaterials (Basel), 2016, 6(7), 129. doi: 10.3390/nano6070129
  53. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev., 2019, 119(8), 5298-5415. doi: 10.1021/acs.chemrev.8b00593
  54. Ding, Y.; Xu, W.; Xu, T.; Zhu, Z.; Fong, H. Theories and principles behind electrospinning. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning; CRC Press: Boca Raton, FL, USA, 2019, pp. 22-51. doi: 10.1201/9780429085765-2
  55. de Man, F.M.; van Eerden, R.A.G.; Oomen-de Hoop, E.; Veraart, J.N.; van Doorn, N.; van Doorn, L.; van der Gaast, A.; Mathijssen, R.H.J. Efficacy and toxicity of weekly carboplatin and paclitaxel as induction or palliative treatment in advanced esophageal cancer patients. Cancers (Basel), 2019, 11(6), 826. doi: 10.3390/cancers11060826
  56. Bhattarai, R.S. Comparison of electrospun and solvent cast PLA/PVA inserts as potential ocular drug delivery vehicles; University of Toledo, 2016.
  57. Chi, H.Y.; Chang, N.Y.; Li, C.; Chan, V.; Hsieh, J.H.; Tsai, Y.H.; Lin, T. Fabrication of gelatin nanofibers by electrospinning—Mixture of gelatin and polyvinyl alcohol. Polymers (Basel), 2022, 14(13), 2610. doi: 10.3390/polym14132610
  58. Cao, D.; Li, X.; Yang, L.; Yan, D.; Shi, Y.; Fu, Z. Controllable fabrication of micro/nanostructures by electrospinning from polystyrene/poly(vinyl alcohol) emulsion dispersions. J. Appl. Polym. Sci., 2018, 135(26), 46288. doi: 10.1002/app.46288
  59. Moydeen, A.M.; Ali Padusha, M.S.; Aboelfetoh, E.F.; Al-Deyab, S.S.; El-Newehy, M.H. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study. Int. J. Biol. Macromol., 2018, 116, 1250-1259. doi: 10.1016/j.ijbiomac.2018.05.130
  60. Zare, M.; Davoodi, P.; Ramakrishna, S. Electrospun shape memory polymer micro-/nanofibers and tailoring their roles for biomedical applications. Nanomaterials (Basel), 2021, 11(4), 933. doi: 10.3390/nano11040933
  61. Arinstein, A.; Zussman, E. Electrospun polymer nanofibers: Mechanical and thermodynamic perspectives. J. Polym. Sci., B, Polym. Phys., 2011, 49(10), 691-707. doi: 10.1002/polb.22247
  62. Rošic, R.; Pelipenko, J.; Kocbek, P.; Baumgartner, S.; Bešter-Rogač, M.; Kristl, J. The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur. Polym. J., 2012, 48(8), 1374-1384. doi: 10.1016/j.eurpolymj.2012.05.001
  63. Li, Y.; Lim, C.T.; Kotaki, M. Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer (Guildf.), 2015, 56, 572-580. doi: 10.1016/j.polymer.2014.10.073
  64. Pan, X.Q.; Gong, Y.C.; Li, Z.L.; Li, Y.P.; Xiong, X.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int. J. Biol. Macromol., 2019, 139, 377-386. doi: 10.1016/j.ijbiomac.2019.07.224
  65. Deng, K.; Li, C.; Huang, S.; Xing, B.; Jin, D.; Zeng, Q.; Hou, Z.; Lin, J. Recent progress in near infrared light triggered photodynamic therapy. Small, 2017, 13(44), 1702299. doi: 10.1002/smll.201702299
  66. Mehrabani, M.; Jafarinejad-Farsangi, S.; Raeiszadeh, M.; Tarzi, M.E.; sheikholeslami, M.; Nematollahi, M.H.; Khoshfekr, V.; Juybari, K.B.; Mehrabani, M. Effects of the Ethanol and Ethyl Acetate extracts of terminalia chebula Retz. On proliferation, migration, and HIF-1α and CXCR-4 expression in MCF-7 cells: An in vitro study. Appl. Biochem. Biotechnol., 2023, 195(5), 3327-3344. doi: 10.1007/s12010-022-04301-z
  67. Elsadek, N.E.; Nagah, A.; Ibrahim, T.M.; Chopra, H.; Ghonaim, G.A.; Emam, S.E.; Cavalu, S.; Attia, M.S. Electrospun nanofibers revisited: An update on the emerging applications in nanomedicine. Materials (Basel), 2022, 15(5), 1934. doi: 10.3390/ma15051934
  68. Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377
  69. Min, B.; You, Y.; Kim, J-M.; Lee, S.J.; Park, W.H. Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr. Polym., 2004, 57(3), 285-292. doi: 10.1016/j.carbpol.2004.05.007
  70. Sisson, A.L.; Ekinci, D.; Lendlein, A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer (Guildf.), 2013, 54(17), 4333-4350. doi: 10.1016/j.polymer.2013.04.045
  71. Zhang, H.; Ji, Y.; Yuan, C.; Sun, P.; Xu, Q.; Lin, D.; Han, Z.; Xu, X.; Zhou, Q.; Deng, J. Fabrication of astaxanthin-loaded electrospun nanofiber-based mucoadhesive patches with water‐insoluble backing for the treatment of oral premalignant lesions. Mater. Des., 2022, 223, 111131. doi: 10.1016/j.matdes.2022.111131
  72. Alahmmar, M.; Prabhakaran, P.; Jaganathan, S.; Nik, N.A.N. Fabrication and characterization of polycaprolactone with retinoic acid and cerium oxide for anticancer applications. Biointerface Res. Appl. Chem., 2023, 13, 1-15.
  73. Jagtiani, E.; Sabnis, A.S. Recent advancements of electrospun nanofibers for cancer therapy. Polym. Bull., 2023, 80(2), 1215-1242. doi: 10.1007/s00289-022-04153-x
  74. Liu, J.; Du, C.; Chen, H.; Huang, W.; Lei, Y. Nano‐Micron combined Hydrogel Microspheres: Novel answer for minimal invasive biomedical applications. Macromol. Rapid Commun., 2024, 45(11), 2300670. doi: 10.1002/marc.202300670
  75. Siafaka, P.I.; Özcan Bülbül, E.; Dilsiz, P.; Karantas, I.D.; Okur, M.E.; Üstündağ Okur, N. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: Current status and applications. J. Drug Target., 2021, 29(5), 476-490. doi: 10.1080/1061186X.2020.1859516
  76. Nam, S.; Lee, S.Y.; Cho, H.J. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. J. Colloid Interface Sci., 2017, 508, 112-120. doi: 10.1016/j.jcis.2017.08.030
  77. Liu, Y.; Chen, X.; Yu, D.G.; Liu, H.; Liu, Y.; Liu, P. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Mol. Pharm., 2021, 18(11), 4170-4178. doi: 10.1021/acs.molpharmaceut.1c00559
  78. Flexible Nanocellulose-Nanoparticle Composites: Structures and Properties; Monash University, 2017.
  79. Shikhi-Abadi, P.G.; Irani, M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int. J. Biol. Macromol., 2021, 183, 790-810. doi: 10.1016/j.ijbiomac.2021.05.009
  80. Nomura, N.; Saijo, K.; Kato, M.; Wang, P.C.; Ohno, T.; Matsumura, M. Improved MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay for the measurement of viable animal cell number in porous cellulose carriers. Biotechnol. Tech., 1996, 10(11), 883-888. doi: 10.1007/BF00154678
  81. Reshma Syed; Balasasirekha R, Optimisation and development of aegle marmelos incorporated prunus amaygdalus var dulcis gum capsule film. JAASR, 2021, 3(4), 35-41. doi: 10.46947/joaasr342021127
  82. Poláková, L.; Širc, J.; Hobzová, R.; Cocârță, A.I.; Heřmánková, E. Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int. J. Pharm., 2019, 558, 268-283. doi: 10.1016/j.ijpharm.2018.12.059
  83. Gao, X.; Xu, Z.; Liu, G.; Wu, J. Polyphenols as a versatile component in tissue engineering. Acta Biomater., 2021, 119, 57-74. doi: 10.1016/j.actbio.2020.11.004
  84. Nam, S.; Lee, J.J.; Lee, S.Y.; Jeong, J.Y.; Kang, W.S.; Cho, H.J. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int. J. Pharm., 2017, 526(1-2), 225-234. doi: 10.1016/j.ijpharm.2017.05.004
  85. Jiang, L.; Luo, J.; Hong, D.; Guo, S.; Wang, S.; Zhou, B.; Zhou, S.; Ge, J. Recent advances of Poly(lactic‐co‐glycolic acid)‐based nanoparticles for tumor‐targeted drug delivery. ChemistrySelect, 2022, 7(3), e202103524. doi: 10.1002/slct.202103524
  86. Li, B.; Yang, X. Rutin-loaded cellulose acetate/poly(ethylene oxide) fiber membrane fabricated by electrospinning: A bioactive material. Mater. Sci. Eng. C, 2020, 109, 110601. doi: 10.1016/j.msec.2019.110601
  87. Shinde, A.; Panchal, K.; Katke, S.; Paliwal, R.; Chaurasiya, A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapie, 2022, 77(4), 425-443. doi: 10.1016/j.therap.2021.10.010
  88. Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res., 2004, 21(2), 201-230. doi: 10.1023/B:PHAM.0000016235.32639.23
  89. Ravichandran, S.; Radhakrishnan, J.; Nandhiraman, V.; Mariappan, M. Ruthenium complex infused polycaprolactone (PCL-Ru) nanofibers and their in vitro anticancer activity against human tested cancer cell lines. Results in Chemistry, 2022, 4, 100380. doi: 10.1016/j.rechem.2022.100380
  90. Jiang, B.; Yang, Z.; Shi, H.; T Jalil, A.; M Saleh, M.; Mi, W. Potentiation of Curcumin-loaded zeolite Y nanoparticles/PCL-gelatin electrospun nanofibers for postsurgical glioblastoma treatment. J. Drug Deliv. Sci. Technol., 2023, 80, 104105. doi: 10.1016/j.jddst.2022.104105
  91. Spizzirri, U.G.; Aiello, F.; Carullo, G.; Facente, A.; Restuccia, D. Nanotechnologies: An innovative tool to release natural extracts with antimicrobial properties. Pharmaceutics, 2021, 13(2), 230. doi: 10.3390/pharmaceutics13020230
  92. Lopes, P.P.; Barroca, N.B.; Daniel-da-Silva, A.L.; Ferreira, L.B. Application of chitosan based materials for drug delivery. Front. Biomater. Chitosan Based Mater. Its Appl, 2017, 3, 181-248. doi: 10.2174/9781681084855117030011
  93. Ravichandran, S.; Jegathaprathaban, R.; Radhakrishnan, J.; Usha, R.; Vijayan, V.; Teklemariam, A. An investigation of electrospun Clerodendrum phlomidis leaves extract infused Polycaprolactone nanofiber for in vitro biological application. Bioinorg. Chem. Appl., 2022, 2022(1), 2335443. doi: 10.1155/2022/2335443
  94. Wu, Q.; Hu, Y.; Yu, B.; Hu, H.; Xu, F.J. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J. Control. Release, 2023, 362, 19-43. doi: 10.1016/j.jconrel.2023.08.019
  95. Zhang, J; Li, L; Jiang, C; Xing, C; Kim, S-H; Lu, J. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer Agents Med. Chem., 2012, 12(10), 1239-1254.
  96. Fan, W.; Huang, P.; Chen, X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev., 2016, 45(23), 6488-6519. doi: 10.1039/C6CS00616G
  97. Merlin, J.P.J.; Crous, A.; Abrahamse, H. Nano‐phototherapy: Favorable prospects for cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2024, 16(1), e1930. doi: 10.1002/wnan.1930
  98. Liu, X.; Zhan, W.; Gao, G.; Jiang, Q.; Zhang, X.; Zhang, H.; Sun, X.; Han, W.; Wu, F.G.; Liang, G. Apoptosis-amplified assembly of porphyrin nanofiber enhances photodynamic therapy of oral tumor. J. Am. Chem. Soc., 2023, 145(14), 7918-7930. doi: 10.1021/jacs.2c13189
  99. Pandey, M.; Choudhury, H.; Ying, J.N.S.; Ling, J.F.S.; Ting, J.; Ting, J.S.S.; Zhia Hwen, I.K.; Suen, H.W.; S Kamar, H.S.; Gorain, B.; Jain, N.; M Amin, M.C.I. Mucoadhesive nanocarriers as a promising strategy to enhance intracellular delivery against oral cavity carcinoma. Pharmaceutics, 2022, 14(4), 795. doi: 10.3390/pharmaceutics14040795
  100. Reda, R.; Wen, M.M.; El-Kamel, A. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int. J. Nanomedicine, 2017, 12, 2335-2351. doi: 10.2147/IJN.S131253
  101. Halder, J.; Dubey, D.; K Rajwar, T.; Mishra, A.; Satpathy, B.; Sahoo, D.; P Yadav, N.; K Rai, V.; Pradhan, D.; Manoharadas, S.; Kar, B.; Ghosh, G.; Rath, G. Local delivery of methotrexate/glycyrrhizin-loaded hyaluronic acid nanofiber for the management of oral cancer. Int. J. Pharm., 2024, 660, 124311. doi: 10.1016/j.ijpharm.2024.124311
  102. Choi, J.S.; Han, S.H.; Hyun, C.; Yoo, H.S. Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(7), 1396-1406. doi: 10.1002/jbm.b.33487
  103. Liu, Y.; Xu, Y.; Zhang, X.; Liu, N.; Cong, B.; Sun, Y.; Guo, M.; Liu, Z.; Jiang, L.; Wang, W.; Wu, T.; Wang, Y. On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration. J. Funct. Biomater., 2022, 13(4), 167. doi: 10.3390/jfb13040167
  104. Colley, H.E.; Said, Z.; Santocildes-Romero, M.E.; Baker, S.R.; D’Apice, K.; Hansen, J.; Madsen, L.S.; Thornhill, M.H.; Hatton, P.V.; Murdoch, C. Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa. Biomaterials, 2018, 178, 134-146. doi: 10.1016/j.biomaterials.2018.06.009
  105. Kim, S.; Hao, Q.; Jeong, D.I.; Huh, J.W.; Choi, Y.E.; Cho, H.J. Flash dissolving nanofiber membranes for chemo/cascade chemodynamic therapy of oral cancer. Mater. Des., 2023, 231, 112063. doi: 10.1016/j.matdes.2023.112063
  106. Chu, B.; Chen, D.; Ma, S.; Yang, Y.; Shang, F.; Lv, W.; Li, Y. Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis. J. Biomater. Appl., 2024, 39(3), 221-234. doi: 10.1177/08853282241258311
  107. Park, J.; Hao, Q.; Jeong, D.I.; Kim, H.J.; Kim, S.; Lee, S.Y.; Chu, S.; Hyun, U.; Cho, H.J. Cascade Hydroxyl radical-generating and Ferroptosis-inducing nanofiber system for the therapy of oral squamous cell carcinoma. Molecules, 2024, 29(16), 3964. doi: 10.3390/molecules29163964
  108. Edmans, J.G.; Ollington, B.; Colley, H.E.; Santocildes-Romero, M.E.; Siim Madsen, L.; Hatton, P.V.; Spain, S.G.; Murdoch, C. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease. J. Control. Release, 2022, 350, 146-157. doi: 10.1016/j.jconrel.2022.08.016
  109. Liu, J.; Li, M.; Luo, Z.; Dai, L.; Guo, X.; Cai, K. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today, 2017, 15, 56-90. doi: 10.1016/j.nantod.2017.06.010
  110. Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha, B.V.; Lim, K.H.C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev., 2015, 44(3), 790-814. doi: 10.1039/C4CS00226A
  111. Torres-Giner, S.; Pérez-Masiá, R.; Lagaron, J.M. A review on electrospun polymer nanostructures as advanced bioactive platforms. Polym. Eng. Sci., 2016, 56(5), 500-527. doi: 10.1002/pen.24274
  112. Pant, B.; Park, M.; Park, S.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics, 2019, 11(7), 305. doi: 10.3390/pharmaceutics11070305
  113. Singh, A.; Rath, G.; Singh, R.; Goyal, A.K. Nanofibers: An effective tool for controlled and sustained drug delivery. Curr. Drug Deliv., 2018, 15(2), 155-166. doi: 10.2174/1567201814666171002115230
  114. Reneker, D.H.; Yarin, A.L.; Zussman, E.; Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech., 2007, 41, 43-346. doi: 10.1016/S0065-2156(07)41002-X
  115. Tripathi, D.; Srivastava, M.; Rathour, K.; Rai, A.K.; Wal, P.; Sahoo, J.; Tiwari, R.K.; Pandey, P. A promising approach of Dermal targeting of antipsoriatic drugs via engineered nanocarriers drug delivery systems for tackling psoriasis. Drug Metab. Bioanal. Lett., 2023, 16(2), 89-104. doi: 10.2174/2949681016666230803150329
  116. Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol., 2019, 134, 673-694. doi: 10.1016/j.ijbiomac.2019.04.197
  117. Bhattarai, R.S.; Bachu, R.D.; Boddu, S.H.S.; Bhaduri, S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics, 2018, 11(1), 5. doi: 10.3390/pharmaceutics11010005
  118. Hawthorne, D.; Pannala, A.; Sandeman, S.; Lloyd, A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J. Drug Deliv. Sci. Technol., 2022, 78, 103936. doi: 10.1016/j.jddst.2022.103936
  119. Wang, Y.; Li, H.; Feng, Y.; Jiang, P.; Su, J.; Huang, C. Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Int. J. Nanomedicine, 2019, 14, 963-976. doi: 10.2147/IJN.S182073
  120. Kajdič, S.; Planinšek, O.; Gašperlin, M.; Kocbek, P. Electrospun nanofibers for customized drug-delivery systems. J. Drug Deliv. Sci. Technol., 2019, 51, 672-681. doi: 10.1016/j.jddst.2019.03.038
  121. Goonoo, N.; Bhaw-Luximon, A.; Jhurry, D. Drug loading and release from electrospun biodegradable nanofibers. J. Biomed. Nanotechnol., 2014, 10(9), 2173-2199. doi: 10.1166/jbn.2014.1885
  122. Desbrieres, J; Peptu, C; Ochiuz, L; Savin, C; Popa, M; Vasiliu, S Application of chitosan-based formulations in controlled drug delivery. In: Sustainable Agriculture Reviews 36; Springer: Cham, 2019; 36, pp. 241-314. doi: 10.1007/978-3-030-16581-9_7
  123. Tripathi, D.; Mishra, S.; Rai, A.K.; Sahoo, J.; Sharma, D.K.; Singh, Y. Curcumin-loaded hydrotropic solid dispersion topical gel development and evaluation: A greener approach towards Transdermal delivery of drugs. Curr. Green Chem., 2022, 9(1), 26-39. doi: 10.2174/2213346110666221020121020
  124. Toriello, M.; Afsari, M.; Shon, H.; Tijing, L. Progress on the fabrication and application of electrospun nanofiber composites. Membranes (Basel), 2020, 10(9), 204. doi: 10.3390/membranes10090204
  125. Anup, N.; Chavan, T.; Chavan, S.; Polaka, S.; Kalyane, D.; Abed, S.N.; Venugopala, K.N.; Kalia, K.; Tekade, R.K. Reinforced electrospun nanofiber composites for drug delivery applications. J. Biomed. Mater. Res. A, 2021, 109(10), 2036-2064. doi: 10.1002/jbm.a.37187
  126. Huang, Y.; Song, J.; Yang, C.; Long, Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today, 2019, 28, 98-113. doi: 10.1016/j.mattod.2019.04.018
  127. Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically electrospun nanofibers and their applications: A review. Nano Materials Science, 2021, 3(3), 213-232. doi: 10.1016/j.nanoms.2020.11.003
  128. Boda, S.K.; Fischer, N.G.; Ye, Z.; Aparicio, C. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides. Biomacromolecules, 2020, 21(12), 4945-4961. doi: 10.1021/acs.biomac.0c01163
  129. Bahrainian, S.; Abbaspour, M.; Kouchak, M.; Moghadam, P.T. A review on fast dissolving systems: From tablets to nanofibers. Jundishapur J. Nat. Pharm. Prod., 2017, 12.
  130. Peptu, C.; Rotaru, R.; Ignat, L.; Humelnicu, A.; Harabagiu, V.; Peptu, C.; Leon, M.M.; Mitu, F.; Cojocaru, E.; Boca, A.; Tamba, B. Nanotechnology approaches for pain therapy through transdermal drug delivery. Curr. Pharm. Des., 2015, 21(42), 6125-6139. doi: 10.2174/1381612821666151027152752
  131. Sofi, H.S.; Abdal-hay, A.; Ivanovski, S.; Zhang, Y.S.; Sheikh, F.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater. Sci. Eng. C, 2020, 111, 110756. doi: 10.1016/j.msec.2020.110756
  132. Lubasova, D.; Niu, H.; Zhao, X.; Lin, T. Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers. RSC Advances, 2015, 5(67), 54481-54487. doi: 10.1039/C5RA07514A
  133. Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol., 2010, 70(5), 703-718. doi: 10.1016/j.compscitech.2010.01.010
  134. Opálková Šišková, A.; Kozma, E.; Opálek, A.; Kroneková, Z.; Kleinová, A.; Nagy, Š.; Kronek, J.; Rydz, J.; Eckstein Andicsová, A. Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials (Basel), 2020, 13(16), 3580. doi: 10.3390/ma13163580
  135. Tripathi, D.; Raman, S.K.; Sahoo, J.; Sharma, D.K.; Rai, A.K. Technical applications of hydrotropes: Sustainable and green carriers. Biointerface Res. Appl. Chem., 2023, 13(1), 91.
  136. Tripathi, D.; M Prabhu, B.; Sahoo, J.; Kumari, J. Navigating the solution to drug formulation problems at research and development stages by Amorphous solid dispersion technology. Recent Adv. Drug Deliv. Formul., 2024, 18(2), 79-99.
  137. Ghazalian, M.; Afshar, S.; Rostami, A.; Rashedi, S.; Bahrami, S.H. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp., 2022, 636, 128163. doi: 10.1016/j.colsurfa.2021.128163
  138. Kutikov, A.B.; Song, J. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng., 2015, 1(7), 463-480. doi: 10.1021/acsbiomaterials.5b00122
  139. Sebe, I.; Szabó, P.; Kállai-Szabó, B.; Zelkó, R. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int. J. Pharm., 2015, 494(1), 516-530. doi: 10.1016/j.ijpharm.2015.08.054
  140. Balusamy, B.; Celebioglu, A.; Senthamizhan, A.; Uyar, T. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review. J. Control. Release, 2020, 326, 482-509. doi: 10.1016/j.jconrel.2020.07.038
  141. Plackett, D.; Letchford, K.; Jackson, J.; Burt, H. A review of nanocellulose as a novel vehicle for drug delivery. Nord. Pulp Paper Res. J., 2014, 29(1), 105-118. doi: 10.3183/npprj-2014-29-01-p105-118
  142. Tavakoli, F.; Shafiei, H.; Ghasemikhah, R. Kinetic and thermodynamics analysis: effect of eudragit polymer as drug release controller in electrospun nanofibers. Quarterly J. Iranian Chem. Commun., 2020, 8, 171-180.
  143. Jiffrin, R.; Razak, S.I.A.; Jamaludin, M.I.; Hamzah, A.S.A.; Mazian, M.A.; Jaya, M.A.T.; Nasrullah, M.Z.; Majrashi, M.; Theyab, A.; Aldarmahi, A.A.; Awan, Z.; Abdel-Daim, M.M.; Azad, A.K. Electrospun nanofiber composites for drug delivery: A review on current progresses. Polymers (Basel), 2022, 14(18), 3725. doi: 10.3390/polym14183725
  144. Wanjale, M.V.; S Jaikumar, V.; Sivakumar, K.C.; Ann Paul, R.; James, J.; Kumar, G.S.V. Supramolecular hydrogel based post-surgical implant system for hydrophobic drug delivery against glioma recurrence. Int. J. Nanomedicine, 2022, 17, 2203-2224. doi: 10.2147/IJN.S348559
  145. Babel, A.; Li, D.; Xia, Y.; Jenekhe, S.A. Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules, 2005, 38(11), 4705-4711. doi: 10.1021/ma047529r
  146. Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomedicine, 2013, 2997-3017.
  147. Chen, M.; Li, Y.F.; Besenbacher, F. Electrospun nanofibers‐mediated on‐demand drug release. Adv. Healthc. Mater., 2014, 3(11), 1721-1732. doi: 10.1002/adhm.201400166
  148. Achilleos, M; Krasia‐Christoforou, T Thermoresponsive Electrospun Polymer-based (Nano)fibers In: Temperature-Responsive Polymers; Wiley, 2018; pp. 329-355.
  149. Kamsani, N.H.; Haris, M.S.; Pandey, M.; Taher, M.; Rullah, K. Biomedical application of responsive ‘smart’ electrospun nanofibers in drug delivery system: A minireview. Arab. J. Chem., 2021, 14(7), 103199. doi: 10.1016/j.arabjc.2021.103199
  150. Wright, M.E.E.; Parrag, I.C.; Yang, M.; Santerre, J.P. Electrospun polyurethane nanofiber scaffolds with ciprofloxacin oligomer versus free ciprofloxacin: Effect on drug release and cell attachment. J. Control. Release, 2017, 250, 107-115. doi: 10.1016/j.jconrel.2017.02.008
  151. Chaturvedi, S.; Rastogi, V.; Kumar, M. An insight on nanofibers assisted localized delivery of anti-cancer drugs to breast for an effective breast cancer treatment. J. Drug Deliv. Sci. Technol., 2024, 93, 105447. doi: 10.1016/j.jddst.2024.105447
  152. Lin, T.C.; Lin, F.H.; Lin, J.C. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater., 2012, 8(7), 2704-2711. doi: 10.1016/j.actbio.2012.03.045
  153. Veres, T.; Voniatis, C.; Molnár, K.; Nesztor, D.; Fehér, D.; Ferencz, A.; Gresits, I.; Thuróczy, G.; Márkus, B.G.; Simon, F.; Nemes, N.M.; García-Hernández, M.; Reiniger, L.; Horváth, I.; Máthé, D.; Szigeti, K.; Tombácz, E.; Jedlovszky-Hajdu, A. An implantable magneto-responsive poly (aspartamide) based electrospun scaffold for hyperthermia treatment. Nanomaterials (Basel), 2022, 12(9), 1476. doi: 10.3390/nano12091476
  154. Valizadeh, A.; Asghari, S.; Abbaspoor, S.; Jafari, A.; Raeisi, M.; Pilehvar, Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(6), e1909. doi: 10.1002/wnan.1909

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers