Pioneering a New Era in Oral Cancer Treatment with Electrospun Nanofibers: A Comprehensive Insight
- Authors: Tripathi D.1, Gupta T.2, Rai A.2, Pandey P.3
-
Affiliations:
- Department of Pharmacy,, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
- Issue: Vol 25, No 7 (2025)
- Pages: 468-489
- Section: Chemistry
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694506
- DOI: https://doi.org/10.2174/0118715206348821241119100134
- ID: 694506
Cite item
Full Text
Abstract
Oral cancer, currently ranked 16th among the most prevalent malignancies worldwide according to GLOBOCAN, presents significant challenges to global oral health. Conventional treatment modalities such as surgery, radiation, and chemotherapy often have limitations, prompting the need for innovative therapeutic approaches. Tissue engineering has emerged as a promising solution aimed at developing biocompatible, functional, and biologically responsive tissue constructs. This approach involves the integration of cells, bioactive compounds, and scaffolds to enhance treatment efficacy. Electrospun nanofibers, mimicking the extracellular matrix, exhibit considerable potential in addressing complex oral health issues by influencing cellular behavior. The versatility of electrospinning technology allows for the fabrication of fiber scaffolds with high surface area, making them ideal for localized delivery of bioactive compounds or pharmaceuticals. Enhancing these electrospun scaffolds with growth factors, nanoparticles, and biologically active substances significantly increases their therapeutic appeal in oral cancer management. This review offers a comprehensive examination of the various applications of electrospun nanofibers in oral cancer therapy. Utilizing electronic databases such as PubMed, CrossREF, and Google Scholar, we conducted an extensive review of relevant literature concerning "electrospun nanofibers" and their therapeutic potential in oral cancer treatment. Key topics addressed include engineering methodologies, drug diffusion mechanisms, factors influencing nanofiber scaffold design, toxicity concerns, and clinical implications. The findings underscore the transformative potential of electrospun nanofibers in revolutionizing oral cancer therapy.
About the authors
Devika Tripathi
Department of Pharmacy,, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
Author for correspondence.
Email: info@benthamscience.net
Tanya Gupta
Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
Email: info@benthamscience.net
Awani Rai
Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
Email: info@benthamscience.net
Prashant Pandey
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University
Email: info@benthamscience.net
References
- Pandey, P.; Arya, D.K.; Deepak, P.; Ali, D.; Alarifi, S.; Srivastava, S.; Lavasanifar, A.; Rajinikanth, P.S. αvβ3 integrin and folate-targeted pH-sensitive liposomes with dual ligand modification for metastatic breast cancer treatment. Bioengineering (Basel), 2024, 11(8), 800. doi: 10.3390/bioengineering11080800
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588
- Lavudi, K.; Nuguri, S.M.; Pandey, P.; Kokkanti, R.R.; Wang, Q.E. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci., 2024, 356, 123033. doi: 10.1016/j.lfs.2024.123033
- Pandey, P.; Chaudhary, R.; Tripathi, D.; Lavudi, K.; Dua, K.; Weinfeld, M.; Lavasanifar, A.; Rajinikanth, P.S. Personalized treatment approach for HER2-positive metastatic breast cancer. Med. Oncol., 2024, 41(11), 252. doi: 10.1007/s12032-024-02504-4
- Bizuayehu, H.M.; Dadi, A.F.; Hassen, T.A.; Ketema, D.B.; Ahmed, K.Y.; Kassa, Z.Y.; Amsalu, E.; Kibret, G.D.; Alemu, A.A.; Alebel, A. Global burden of 34 cancers among women in 2020 and projections to 2040: Population‐based data from 185 countries/territories. Int. J. Cancer, 2024, 154(8), 1377-93.
- Tripathi, D.; Shukla, V.; Sahoo, J.; Sharma, D.K.; Shukla, T. Engineered tissue in cancer research: Techniques, challenges, and current status. Targeted cancer therapy in biomedical engineering; Springer, 2023, pp. 291-324. doi: 10.1007/978-981-19-9786-0_8
- Weinberg, R.A.; Robert, A. The biology of cancer; Garland Science: New York, 2014.
- Alves, D.; Araújo, J.C.; Fangueiro, R.; Ferreira, D.P. Localized therapeutic approaches based on micro/nanofibers for cancer treatment. Molecules, 2023, 28(7), 3053. doi: 10.3390/molecules28073053
- Filho, A.M.; Warnakulasuriya, S. Epidemiology of oral cancer in South and South‐East Asia: Incidence and mortality. Oral Dis., 2024, odi.14906. doi: 10.1111/odi.14906
- Shrestha, A.D.; Vedsted, P.; Kallestrup, P.; Neupane, D. Prevalence and incidence of oral cancer in low‐ and middle‐income countries: A scoping review. Eur. J. Cancer Care (Engl.), 2020, 29(2), e13207. doi: 10.1111/ecc.13207
- Mohammed, R.A.; Ahmed, S.K. Oral cancer screening: Past, present, and future perspectives. Oral Oncology Reports, 2024, 10, 100306. doi: 10.1016/j.oor.2024.100306
- Srivastava, D.; Pandey, P.; Tripathi, D.K.; Yadav, J.P.; Ali, B.; Singh, V.; Verma, A.; Mishra, A.; Kumar, D.; Mishra, A.; Rajinikanth, P.S. Tasar Silkworm Pupae oil: A potential therapeutic and edible lipid source to mitigate the oxidative stress and cholesterol complications associated with diabetes. Food and Humanity, 2024, 3, 100418. doi: 10.1016/j.foohum.2024.100418
- Prelec, J.; Laronde, D.M. Treatment modalities of oral cancer. Can. J. Dent. Hyg., 2014, 48, 13-19.
- Gharat, SA; Momin, MM; Bhavsar, C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(4), 363-400. doi: 10.1615/CritRevTherDrugCarrierSyst.2016016272
- Kumari, M.; Chhikara, B.S.; Singh, P.; Rathi, B.; Singh, G. Signaling and molecular pathways implicated in oral cancer: A concise review. Chem. Biol. Letters, 2024, 11(1), 652-652. doi: 10.62110/sciencein.cbl.2024.v11.652
- Pandey, P; Kumar Arya, D; Ramar, M.K.; Chidambaram, K; Rajinikanth, PS Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov. Today, 2022, 27(9), 2526-2540.
- Pandey, G.; Pandey, P.; Arya, D.K.; Kanaujiya, S.; Kapoor, D.D.; Gupta, R.K.; Ranjan, S.; Chidambaram, K.; Manickam, B.; Rajinikanth, P.S. Multilayered nanofibrous scaffold of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with hemostatic/antibacterial agents for rapid acute hemostatic wound healing. Int. J. Pharm., 2023, 638, 122918.
- Nanda, A; Pandey, P; Rajinikanth, P.S.; Singh, N. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation-A review. Int. J. Biol. Macromol., 2024, 129416.
- Anand, S.; Pandey, P.; Begum, M.Y.; Chidambaram, K.; Arya, D.K.; Gupta, R.K.; Sankhwar, R.; Jaiswal, S.; Thakur, S.; Rajinikanth, P.S. Electrospun biomimetic multifunctional nanofibers loaded with ferulic acid for enhanced antimicrobial and wound-healing activities in STZ-induced diabetic rats. Pharmaceuticals, 2022, 15, 302.
- Anand, S.; Rajinikanth, P.S.; Arya, D.K.; Pandey, P.; Gupta, R.K.; Sankhwar, R.; Chidambaram, K. Multifunctional biomimetic nanofibrous scaffold loaded with asiaticoside for rapid diabetic wound healing. Pharmaceutics, 2022, 14, 273.
- Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45(4-5), 309-316. doi: 10.1016/j.oraloncology.2008.06.002
- Singh, P.; Rajput, M.; Pandey, M. Tumor hypoxia and role of hypoxia-inducible factor in oral cancer. World J. Surg. Oncol., 2024, 22(1), 18. doi: 10.1186/s12957-023-03284-3
- Coletta, R.D.; Yeudall, W.A.; Salo, T. Grand challenges in oral cancers; Frontiers Media, SA, 2020, p. 3.
- Su, Y.F.; Chen, Y.J.; Tsai, F.T.; Li, W.C.; Hsu, M.L.; Wang, D.H.; Yang, C.C. Current insights into oral cancer diagnostics. Diagnostics (Basel), 2021, 11(7), 1287. doi: 10.3390/diagnostics11071287
- Ko, Y.C.; Huang, Y.L.; Lee, C.H.; Chen, M.J.; Lin, L.M.; Tsai, C.C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med., 1995, 24(10), 450-453. doi: 10.1111/j.1600-0714.1995.tb01132.x
- Zhou, Y.; Wang, M.; Yan, C.; Liu, H.; Yu, D.G. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers. Biomolecules, 2022, 12(9), 1254. doi: 10.3390/biom12091254
- Sharma, N.; Bhatia, S.; Singh, S.A.; Batra, N. Oral microbiome and health. AIMS Microbiol., 2018, 4(1), 42-66. doi: 10.3934/microbiol.2018.1.42
- Negri, E.; Franceschi, S.; Bosetti, C.; Levi, F.; Conti, E.; Parpinel, M.; La Vecchia, C. Selected micronutrients and oral and pharyngeal cancer. Int. J. Cancer, 2000, 86(1), 122-127. doi: 10.1002/(SICI)1097-0215(20000401)86:13.0.CO;2-2
- Tiwari, V.; Wilson, D.M., III DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet., 2019, 105(2), 237-257. doi: 10.1016/j.ajhg.2019.06.005
- Saberian, E.; Jenča, A.; Petrášová, A.; Jenčová, J.; Atazadegan Jahromi, R.; Seiffadini, R. Oral cancer at a glance. Asian Pacific J. Cancer Biol., 2023, 8(4), 379-386. doi: 10.31557/apjcb.2023.8.4.379-386
- Bagan, J.; Sarrion, G.; Jimenez, Y. Oral cancer: Clinical features. Oral Oncol., 2010, 46(6), 414-417. doi: 10.1016/j.oraloncology.2010.03.009
- Kawashita, Y.; Koyama, Y.; Kurita, H.; Otsuru, M.; Ota, Y.; Okura, M.; Horie, A.; Sekiya, H.; Umeda, M. Effectiveness of a comprehensive oral management protocol for the prevention of severe oral mucositis in patients receiving radiotherapy with or without chemotherapy for oral cancer: a multicentre, phase II, randomized controlled trial. Int. J. Oral Maxillofac. Surg., 2019, 48(7), 857-864. doi: 10.1016/j.ijom.2018.10.010
- Cohen, E.E.W.; Baru, J.; Huo, D.; Haraf, D.J.; Crowley, M.; Witt, M.E.; Blair, E.A.; Weichselbaum, R.R.; Rosen, F.; Vokes, E.E.; Stenson, K. Efficacy and safety of treating T4 oral cavity tumors with primary chemoradiotherapy. Head Neck, 2009, 31(8), 1013-1021. doi: 10.1002/hed.21062
- Liao, C.T.; Chang, J.T.C.; Wang, H.M.; Ng, S.H.; Hsueh, C.; Lee, L.Y.; Lin, C.H.; Chen, I.H.; Huang, S.F.; Cheng, A.J.; Yen, T-C. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann. Surg. Oncol., 2008, 15(3), 915-922. doi: 10.1245/s10434-007-9761-5
- Do, L.; Puthawala, A.; Syed, N. Interstitial brachytherapy as boost for locally advanced T4 head and neck cancer. Brachytherapy, 2009, 8(4), 385-391. doi: 10.1016/j.brachy.2009.03.191
- Grimard, L.; Esche, B.; Lamothe, A.; Spaans, J.N. Interstitial brachytherapy in the management of persistent head and neck disease after definitive external beam radiation therapy. Brachytherapy, 2009, 8(3), 284-289. doi: 10.1016/j.brachy.2008.12.007
- Borges, G.Á.; Rêgo, D.F.; Assad, D.X.; Coletta, R.D.; De Luca Canto, G.; Guerra, E.N.S. In vivo and in vitro effects of curcumin on head and neck carcinoma: A systematic review. J. Oral Pathol. Med., 2017, 46(1), 3-20. doi: 10.1111/jop.12455
- Global status report on alcohol and health. Available from: https://www.who.int/publications/i/item/global-status-report-on-alcohol-and-health-2014
- Marziliano, A.; Teckie, S.; Diefenbach, M.A. Alcohol‐related head and neck cancer: Summary of the literature. Head Neck, 2020, 42(4), 732-738. doi: 10.1002/hed.26023
- Shahriar, S.M.S.; Mondal, J.; Hasan, M.N.; Revuri, V.; Lee, D.Y.; Lee, Y.K. Electrospinning nanofibers for therapeutics delivery. Nanomaterials (Basel), 2019, 9(4), 532. doi: 10.3390/nano9040532
- Zielińska, A.; Karczewski, J.; Eder, P.; Kolanowski, T.; Szalata, M.; Wielgus, K.; Szalata, M.; Kim, D.; Shin, S.R.; Słomski, R.; Souto, E.B. Scaffolds for drug delivery and tissue engineering: The role of genetics. J. Control. Release, 2023, 359, 207-223. doi: 10.1016/j.jconrel.2023.05.042
- Fuhrmann, K.; Fuhrmann, G. Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr. Opin. Colloid Interface Sci., 2017, 31, 67-74. doi: 10.1016/j.cocis.2017.07.002
- Frenot, A.; Henriksson, M.W.; Walkenström, P. Electrospinning of cellulose‐based nanofibers. J. Appl. Polym. Sci., 2007, 103(3), 1473-1482. doi: 10.1002/app.24912
- Agarwal, Y.; Rajinikanth, P.S.; Ranjan, S.; Tiwari, U.; Balasubramnaiam, J.; Pandey, P.; Arya, D.K.; Anand, S.; Deepak, P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int. J. Biol. Macromol., 2021, 176, 376-386. doi: 10.1016/j.ijbiomac.2021.02.025
- Kanaujiya, S.; Arya, D.; Pandey, P.; Singh, S.; Pandey, G.; Anjum, S.; Anjum, M.M.; Ali, D.; Alarifi, S.; Mr, V.; Sivakumar, S.; Srivastava, S.; Rajinikanth, P.S. Resveratrol-Ampicillin dual-drug loaded Polyvinylpyrrolidone/Polyvinyl alcohol biomimic electrospun nanofiber enriched with collagen for efficient burn wound repair. Int. J. Nanomedicine, 2024, 19, 5397-5418. doi: 10.2147/IJN.S464046
- Tripathi, D; Sahoo, J; Sharma, DK; Raman, SK. Ecologically validated UV method for etodolac estimation in pharmaceutical formulation using green hydrotropic solution and forced degradation study for stability detection. LANS, 2022, 13(1), 14.
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today, 2019, 17, 1-35. doi: 10.1016/j.apmt.2019.06.015
- Yadav, S; Arya, DK; Pandey, P; Anand, S; Gautam, AK; Ranjan, S; Saraf, SA; Rajamanickam, V.M.; Singh, S.; Chidambaram, K.; Alqahtani, T. ECM mimicking biodegradable nanofibrous scaffold enriched with Curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity. Int. J. Nanomed., 2022, 17, 6843-6859.
- Anand, S; Rajinikanth, P; Pandey, P; Deepak, P; Thakur, S; Arya, D.K.; Jaiswal, S. Biomaterial-based nanofibers for drug delivery applications. In: Biomedical Research, Medicine, and Disease; CRC Press, 2023; pp. 531-546.
- Ding, Y.; Li, W.; Zhang, F.; Liu, Z.; Zanjanizadeh Ezazi, N.; Liu, D.; Santos, H.A. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv. Funct. Mater., 2019, 29(2), 1802852. doi: 10.1002/adfm.201802852
- Teo, W.E.; Inai, R.; Ramakrishna, S. Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater., 2011, 12(1), 013002. doi: 10.1088/1468-6996/12/1/013002
- Sun, G.; Sun, L.; Xie, H.; Liu, J. Electrospinning of nanofibers for energy applications. Nanomaterials (Basel), 2016, 6(7), 129. doi: 10.3390/nano6070129
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev., 2019, 119(8), 5298-5415. doi: 10.1021/acs.chemrev.8b00593
- Ding, Y.; Xu, W.; Xu, T.; Zhu, Z.; Fong, H. Theories and principles behind electrospinning. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning; CRC Press: Boca Raton, FL, USA, 2019, pp. 22-51. doi: 10.1201/9780429085765-2
- de Man, F.M.; van Eerden, R.A.G.; Oomen-de Hoop, E.; Veraart, J.N.; van Doorn, N.; van Doorn, L.; van der Gaast, A.; Mathijssen, R.H.J. Efficacy and toxicity of weekly carboplatin and paclitaxel as induction or palliative treatment in advanced esophageal cancer patients. Cancers (Basel), 2019, 11(6), 826. doi: 10.3390/cancers11060826
- Bhattarai, R.S. Comparison of electrospun and solvent cast PLA/PVA inserts as potential ocular drug delivery vehicles; University of Toledo, 2016.
- Chi, H.Y.; Chang, N.Y.; Li, C.; Chan, V.; Hsieh, J.H.; Tsai, Y.H.; Lin, T. Fabrication of gelatin nanofibers by electrospinning—Mixture of gelatin and polyvinyl alcohol. Polymers (Basel), 2022, 14(13), 2610. doi: 10.3390/polym14132610
- Cao, D.; Li, X.; Yang, L.; Yan, D.; Shi, Y.; Fu, Z. Controllable fabrication of micro/nanostructures by electrospinning from polystyrene/poly(vinyl alcohol) emulsion dispersions. J. Appl. Polym. Sci., 2018, 135(26), 46288. doi: 10.1002/app.46288
- Moydeen, A.M.; Ali Padusha, M.S.; Aboelfetoh, E.F.; Al-Deyab, S.S.; El-Newehy, M.H. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study. Int. J. Biol. Macromol., 2018, 116, 1250-1259. doi: 10.1016/j.ijbiomac.2018.05.130
- Zare, M.; Davoodi, P.; Ramakrishna, S. Electrospun shape memory polymer micro-/nanofibers and tailoring their roles for biomedical applications. Nanomaterials (Basel), 2021, 11(4), 933. doi: 10.3390/nano11040933
- Arinstein, A.; Zussman, E. Electrospun polymer nanofibers: Mechanical and thermodynamic perspectives. J. Polym. Sci., B, Polym. Phys., 2011, 49(10), 691-707. doi: 10.1002/polb.22247
- Rošic, R.; Pelipenko, J.; Kocbek, P.; Baumgartner, S.; Bešter-Rogač, M.; Kristl, J. The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur. Polym. J., 2012, 48(8), 1374-1384. doi: 10.1016/j.eurpolymj.2012.05.001
- Li, Y.; Lim, C.T.; Kotaki, M. Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer (Guildf.), 2015, 56, 572-580. doi: 10.1016/j.polymer.2014.10.073
- Pan, X.Q.; Gong, Y.C.; Li, Z.L.; Li, Y.P.; Xiong, X.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int. J. Biol. Macromol., 2019, 139, 377-386. doi: 10.1016/j.ijbiomac.2019.07.224
- Deng, K.; Li, C.; Huang, S.; Xing, B.; Jin, D.; Zeng, Q.; Hou, Z.; Lin, J. Recent progress in near infrared light triggered photodynamic therapy. Small, 2017, 13(44), 1702299. doi: 10.1002/smll.201702299
- Mehrabani, M.; Jafarinejad-Farsangi, S.; Raeiszadeh, M.; Tarzi, M.E.; sheikholeslami, M.; Nematollahi, M.H.; Khoshfekr, V.; Juybari, K.B.; Mehrabani, M. Effects of the Ethanol and Ethyl Acetate extracts of terminalia chebula Retz. On proliferation, migration, and HIF-1α and CXCR-4 expression in MCF-7 cells: An in vitro study. Appl. Biochem. Biotechnol., 2023, 195(5), 3327-3344. doi: 10.1007/s12010-022-04301-z
- Elsadek, N.E.; Nagah, A.; Ibrahim, T.M.; Chopra, H.; Ghonaim, G.A.; Emam, S.E.; Cavalu, S.; Attia, M.S. Electrospun nanofibers revisited: An update on the emerging applications in nanomedicine. Materials (Basel), 2022, 15(5), 1934. doi: 10.3390/ma15051934
- Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377
- Min, B.; You, Y.; Kim, J-M.; Lee, S.J.; Park, W.H. Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr. Polym., 2004, 57(3), 285-292. doi: 10.1016/j.carbpol.2004.05.007
- Sisson, A.L.; Ekinci, D.; Lendlein, A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer (Guildf.), 2013, 54(17), 4333-4350. doi: 10.1016/j.polymer.2013.04.045
- Zhang, H.; Ji, Y.; Yuan, C.; Sun, P.; Xu, Q.; Lin, D.; Han, Z.; Xu, X.; Zhou, Q.; Deng, J. Fabrication of astaxanthin-loaded electrospun nanofiber-based mucoadhesive patches with water‐insoluble backing for the treatment of oral premalignant lesions. Mater. Des., 2022, 223, 111131. doi: 10.1016/j.matdes.2022.111131
- Alahmmar, M.; Prabhakaran, P.; Jaganathan, S.; Nik, N.A.N. Fabrication and characterization of polycaprolactone with retinoic acid and cerium oxide for anticancer applications. Biointerface Res. Appl. Chem., 2023, 13, 1-15.
- Jagtiani, E.; Sabnis, A.S. Recent advancements of electrospun nanofibers for cancer therapy. Polym. Bull., 2023, 80(2), 1215-1242. doi: 10.1007/s00289-022-04153-x
- Liu, J.; Du, C.; Chen, H.; Huang, W.; Lei, Y. Nano‐Micron combined Hydrogel Microspheres: Novel answer for minimal invasive biomedical applications. Macromol. Rapid Commun., 2024, 45(11), 2300670. doi: 10.1002/marc.202300670
- Siafaka, P.I.; Özcan Bülbül, E.; Dilsiz, P.; Karantas, I.D.; Okur, M.E.; Üstündağ Okur, N. Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: Current status and applications. J. Drug Target., 2021, 29(5), 476-490. doi: 10.1080/1061186X.2020.1859516
- Nam, S.; Lee, S.Y.; Cho, H.J. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. J. Colloid Interface Sci., 2017, 508, 112-120. doi: 10.1016/j.jcis.2017.08.030
- Liu, Y.; Chen, X.; Yu, D.G.; Liu, H.; Liu, Y.; Liu, P. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Mol. Pharm., 2021, 18(11), 4170-4178. doi: 10.1021/acs.molpharmaceut.1c00559
- Flexible Nanocellulose-Nanoparticle Composites: Structures and Properties; Monash University, 2017.
- Shikhi-Abadi, P.G.; Irani, M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int. J. Biol. Macromol., 2021, 183, 790-810. doi: 10.1016/j.ijbiomac.2021.05.009
- Nomura, N.; Saijo, K.; Kato, M.; Wang, P.C.; Ohno, T.; Matsumura, M. Improved MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay for the measurement of viable animal cell number in porous cellulose carriers. Biotechnol. Tech., 1996, 10(11), 883-888. doi: 10.1007/BF00154678
- Reshma Syed; Balasasirekha R, Optimisation and development of aegle marmelos incorporated prunus amaygdalus var dulcis gum capsule film. JAASR, 2021, 3(4), 35-41. doi: 10.46947/joaasr342021127
- Poláková, L.; Širc, J.; Hobzová, R.; Cocârță, A.I.; Heřmánková, E. Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int. J. Pharm., 2019, 558, 268-283. doi: 10.1016/j.ijpharm.2018.12.059
- Gao, X.; Xu, Z.; Liu, G.; Wu, J. Polyphenols as a versatile component in tissue engineering. Acta Biomater., 2021, 119, 57-74. doi: 10.1016/j.actbio.2020.11.004
- Nam, S.; Lee, J.J.; Lee, S.Y.; Jeong, J.Y.; Kang, W.S.; Cho, H.J. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int. J. Pharm., 2017, 526(1-2), 225-234. doi: 10.1016/j.ijpharm.2017.05.004
- Jiang, L.; Luo, J.; Hong, D.; Guo, S.; Wang, S.; Zhou, B.; Zhou, S.; Ge, J. Recent advances of Poly(lactic‐co‐glycolic acid)‐based nanoparticles for tumor‐targeted drug delivery. ChemistrySelect, 2022, 7(3), e202103524. doi: 10.1002/slct.202103524
- Li, B.; Yang, X. Rutin-loaded cellulose acetate/poly(ethylene oxide) fiber membrane fabricated by electrospinning: A bioactive material. Mater. Sci. Eng. C, 2020, 109, 110601. doi: 10.1016/j.msec.2019.110601
- Shinde, A.; Panchal, K.; Katke, S.; Paliwal, R.; Chaurasiya, A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapie, 2022, 77(4), 425-443. doi: 10.1016/j.therap.2021.10.010
- Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res., 2004, 21(2), 201-230. doi: 10.1023/B:PHAM.0000016235.32639.23
- Ravichandran, S.; Radhakrishnan, J.; Nandhiraman, V.; Mariappan, M. Ruthenium complex infused polycaprolactone (PCL-Ru) nanofibers and their in vitro anticancer activity against human tested cancer cell lines. Results in Chemistry, 2022, 4, 100380. doi: 10.1016/j.rechem.2022.100380
- Jiang, B.; Yang, Z.; Shi, H.; T Jalil, A.; M Saleh, M.; Mi, W. Potentiation of Curcumin-loaded zeolite Y nanoparticles/PCL-gelatin electrospun nanofibers for postsurgical glioblastoma treatment. J. Drug Deliv. Sci. Technol., 2023, 80, 104105. doi: 10.1016/j.jddst.2022.104105
- Spizzirri, U.G.; Aiello, F.; Carullo, G.; Facente, A.; Restuccia, D. Nanotechnologies: An innovative tool to release natural extracts with antimicrobial properties. Pharmaceutics, 2021, 13(2), 230. doi: 10.3390/pharmaceutics13020230
- Lopes, P.P.; Barroca, N.B.; Daniel-da-Silva, A.L.; Ferreira, L.B. Application of chitosan based materials for drug delivery. Front. Biomater. Chitosan Based Mater. Its Appl, 2017, 3, 181-248. doi: 10.2174/9781681084855117030011
- Ravichandran, S.; Jegathaprathaban, R.; Radhakrishnan, J.; Usha, R.; Vijayan, V.; Teklemariam, A. An investigation of electrospun Clerodendrum phlomidis leaves extract infused Polycaprolactone nanofiber for in vitro biological application. Bioinorg. Chem. Appl., 2022, 2022(1), 2335443. doi: 10.1155/2022/2335443
- Wu, Q.; Hu, Y.; Yu, B.; Hu, H.; Xu, F.J. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J. Control. Release, 2023, 362, 19-43. doi: 10.1016/j.jconrel.2023.08.019
- Zhang, J; Li, L; Jiang, C; Xing, C; Kim, S-H; Lu, J. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer Agents Med. Chem., 2012, 12(10), 1239-1254.
- Fan, W.; Huang, P.; Chen, X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev., 2016, 45(23), 6488-6519. doi: 10.1039/C6CS00616G
- Merlin, J.P.J.; Crous, A.; Abrahamse, H. Nano‐phototherapy: Favorable prospects for cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2024, 16(1), e1930. doi: 10.1002/wnan.1930
- Liu, X.; Zhan, W.; Gao, G.; Jiang, Q.; Zhang, X.; Zhang, H.; Sun, X.; Han, W.; Wu, F.G.; Liang, G. Apoptosis-amplified assembly of porphyrin nanofiber enhances photodynamic therapy of oral tumor. J. Am. Chem. Soc., 2023, 145(14), 7918-7930. doi: 10.1021/jacs.2c13189
- Pandey, M.; Choudhury, H.; Ying, J.N.S.; Ling, J.F.S.; Ting, J.; Ting, J.S.S.; Zhia Hwen, I.K.; Suen, H.W.; S Kamar, H.S.; Gorain, B.; Jain, N.; M Amin, M.C.I. Mucoadhesive nanocarriers as a promising strategy to enhance intracellular delivery against oral cavity carcinoma. Pharmaceutics, 2022, 14(4), 795. doi: 10.3390/pharmaceutics14040795
- Reda, R.; Wen, M.M.; El-Kamel, A. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int. J. Nanomedicine, 2017, 12, 2335-2351. doi: 10.2147/IJN.S131253
- Halder, J.; Dubey, D.; K Rajwar, T.; Mishra, A.; Satpathy, B.; Sahoo, D.; P Yadav, N.; K Rai, V.; Pradhan, D.; Manoharadas, S.; Kar, B.; Ghosh, G.; Rath, G. Local delivery of methotrexate/glycyrrhizin-loaded hyaluronic acid nanofiber for the management of oral cancer. Int. J. Pharm., 2024, 660, 124311. doi: 10.1016/j.ijpharm.2024.124311
- Choi, J.S.; Han, S.H.; Hyun, C.; Yoo, H.S. Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(7), 1396-1406. doi: 10.1002/jbm.b.33487
- Liu, Y.; Xu, Y.; Zhang, X.; Liu, N.; Cong, B.; Sun, Y.; Guo, M.; Liu, Z.; Jiang, L.; Wang, W.; Wu, T.; Wang, Y. On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration. J. Funct. Biomater., 2022, 13(4), 167. doi: 10.3390/jfb13040167
- Colley, H.E.; Said, Z.; Santocildes-Romero, M.E.; Baker, S.R.; D’Apice, K.; Hansen, J.; Madsen, L.S.; Thornhill, M.H.; Hatton, P.V.; Murdoch, C. Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa. Biomaterials, 2018, 178, 134-146. doi: 10.1016/j.biomaterials.2018.06.009
- Kim, S.; Hao, Q.; Jeong, D.I.; Huh, J.W.; Choi, Y.E.; Cho, H.J. Flash dissolving nanofiber membranes for chemo/cascade chemodynamic therapy of oral cancer. Mater. Des., 2023, 231, 112063. doi: 10.1016/j.matdes.2023.112063
- Chu, B.; Chen, D.; Ma, S.; Yang, Y.; Shang, F.; Lv, W.; Li, Y. Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis. J. Biomater. Appl., 2024, 39(3), 221-234. doi: 10.1177/08853282241258311
- Park, J.; Hao, Q.; Jeong, D.I.; Kim, H.J.; Kim, S.; Lee, S.Y.; Chu, S.; Hyun, U.; Cho, H.J. Cascade Hydroxyl radical-generating and Ferroptosis-inducing nanofiber system for the therapy of oral squamous cell carcinoma. Molecules, 2024, 29(16), 3964. doi: 10.3390/molecules29163964
- Edmans, J.G.; Ollington, B.; Colley, H.E.; Santocildes-Romero, M.E.; Siim Madsen, L.; Hatton, P.V.; Spain, S.G.; Murdoch, C. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease. J. Control. Release, 2022, 350, 146-157. doi: 10.1016/j.jconrel.2022.08.016
- Liu, J.; Li, M.; Luo, Z.; Dai, L.; Guo, X.; Cai, K. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today, 2017, 15, 56-90. doi: 10.1016/j.nantod.2017.06.010
- Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha, B.V.; Lim, K.H.C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev., 2015, 44(3), 790-814. doi: 10.1039/C4CS00226A
- Torres-Giner, S.; Pérez-Masiá, R.; Lagaron, J.M. A review on electrospun polymer nanostructures as advanced bioactive platforms. Polym. Eng. Sci., 2016, 56(5), 500-527. doi: 10.1002/pen.24274
- Pant, B.; Park, M.; Park, S.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics, 2019, 11(7), 305. doi: 10.3390/pharmaceutics11070305
- Singh, A.; Rath, G.; Singh, R.; Goyal, A.K. Nanofibers: An effective tool for controlled and sustained drug delivery. Curr. Drug Deliv., 2018, 15(2), 155-166. doi: 10.2174/1567201814666171002115230
- Reneker, D.H.; Yarin, A.L.; Zussman, E.; Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech., 2007, 41, 43-346. doi: 10.1016/S0065-2156(07)41002-X
- Tripathi, D.; Srivastava, M.; Rathour, K.; Rai, A.K.; Wal, P.; Sahoo, J.; Tiwari, R.K.; Pandey, P. A promising approach of Dermal targeting of antipsoriatic drugs via engineered nanocarriers drug delivery systems for tackling psoriasis. Drug Metab. Bioanal. Lett., 2023, 16(2), 89-104. doi: 10.2174/2949681016666230803150329
- Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol., 2019, 134, 673-694. doi: 10.1016/j.ijbiomac.2019.04.197
- Bhattarai, R.S.; Bachu, R.D.; Boddu, S.H.S.; Bhaduri, S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics, 2018, 11(1), 5. doi: 10.3390/pharmaceutics11010005
- Hawthorne, D.; Pannala, A.; Sandeman, S.; Lloyd, A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J. Drug Deliv. Sci. Technol., 2022, 78, 103936. doi: 10.1016/j.jddst.2022.103936
- Wang, Y.; Li, H.; Feng, Y.; Jiang, P.; Su, J.; Huang, C. Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Int. J. Nanomedicine, 2019, 14, 963-976. doi: 10.2147/IJN.S182073
- Kajdič, S.; Planinšek, O.; Gašperlin, M.; Kocbek, P. Electrospun nanofibers for customized drug-delivery systems. J. Drug Deliv. Sci. Technol., 2019, 51, 672-681. doi: 10.1016/j.jddst.2019.03.038
- Goonoo, N.; Bhaw-Luximon, A.; Jhurry, D. Drug loading and release from electrospun biodegradable nanofibers. J. Biomed. Nanotechnol., 2014, 10(9), 2173-2199. doi: 10.1166/jbn.2014.1885
- Desbrieres, J; Peptu, C; Ochiuz, L; Savin, C; Popa, M; Vasiliu, S Application of chitosan-based formulations in controlled drug delivery. In: Sustainable Agriculture Reviews 36; Springer: Cham, 2019; 36, pp. 241-314. doi: 10.1007/978-3-030-16581-9_7
- Tripathi, D.; Mishra, S.; Rai, A.K.; Sahoo, J.; Sharma, D.K.; Singh, Y. Curcumin-loaded hydrotropic solid dispersion topical gel development and evaluation: A greener approach towards Transdermal delivery of drugs. Curr. Green Chem., 2022, 9(1), 26-39. doi: 10.2174/2213346110666221020121020
- Toriello, M.; Afsari, M.; Shon, H.; Tijing, L. Progress on the fabrication and application of electrospun nanofiber composites. Membranes (Basel), 2020, 10(9), 204. doi: 10.3390/membranes10090204
- Anup, N.; Chavan, T.; Chavan, S.; Polaka, S.; Kalyane, D.; Abed, S.N.; Venugopala, K.N.; Kalia, K.; Tekade, R.K. Reinforced electrospun nanofiber composites for drug delivery applications. J. Biomed. Mater. Res. A, 2021, 109(10), 2036-2064. doi: 10.1002/jbm.a.37187
- Huang, Y.; Song, J.; Yang, C.; Long, Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today, 2019, 28, 98-113. doi: 10.1016/j.mattod.2019.04.018
- Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically electrospun nanofibers and their applications: A review. Nano Materials Science, 2021, 3(3), 213-232. doi: 10.1016/j.nanoms.2020.11.003
- Boda, S.K.; Fischer, N.G.; Ye, Z.; Aparicio, C. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides. Biomacromolecules, 2020, 21(12), 4945-4961. doi: 10.1021/acs.biomac.0c01163
- Bahrainian, S.; Abbaspour, M.; Kouchak, M.; Moghadam, P.T. A review on fast dissolving systems: From tablets to nanofibers. Jundishapur J. Nat. Pharm. Prod., 2017, 12.
- Peptu, C.; Rotaru, R.; Ignat, L.; Humelnicu, A.; Harabagiu, V.; Peptu, C.; Leon, M.M.; Mitu, F.; Cojocaru, E.; Boca, A.; Tamba, B. Nanotechnology approaches for pain therapy through transdermal drug delivery. Curr. Pharm. Des., 2015, 21(42), 6125-6139. doi: 10.2174/1381612821666151027152752
- Sofi, H.S.; Abdal-hay, A.; Ivanovski, S.; Zhang, Y.S.; Sheikh, F.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater. Sci. Eng. C, 2020, 111, 110756. doi: 10.1016/j.msec.2020.110756
- Lubasova, D.; Niu, H.; Zhao, X.; Lin, T. Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers. RSC Advances, 2015, 5(67), 54481-54487. doi: 10.1039/C5RA07514A
- Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol., 2010, 70(5), 703-718. doi: 10.1016/j.compscitech.2010.01.010
- Opálková Šišková, A.; Kozma, E.; Opálek, A.; Kroneková, Z.; Kleinová, A.; Nagy, Š.; Kronek, J.; Rydz, J.; Eckstein Andicsová, A. Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials (Basel), 2020, 13(16), 3580. doi: 10.3390/ma13163580
- Tripathi, D.; Raman, S.K.; Sahoo, J.; Sharma, D.K.; Rai, A.K. Technical applications of hydrotropes: Sustainable and green carriers. Biointerface Res. Appl. Chem., 2023, 13(1), 91.
- Tripathi, D.; M Prabhu, B.; Sahoo, J.; Kumari, J. Navigating the solution to drug formulation problems at research and development stages by Amorphous solid dispersion technology. Recent Adv. Drug Deliv. Formul., 2024, 18(2), 79-99.
- Ghazalian, M.; Afshar, S.; Rostami, A.; Rashedi, S.; Bahrami, S.H. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp., 2022, 636, 128163. doi: 10.1016/j.colsurfa.2021.128163
- Kutikov, A.B.; Song, J. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng., 2015, 1(7), 463-480. doi: 10.1021/acsbiomaterials.5b00122
- Sebe, I.; Szabó, P.; Kállai-Szabó, B.; Zelkó, R. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int. J. Pharm., 2015, 494(1), 516-530. doi: 10.1016/j.ijpharm.2015.08.054
- Balusamy, B.; Celebioglu, A.; Senthamizhan, A.; Uyar, T. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review. J. Control. Release, 2020, 326, 482-509. doi: 10.1016/j.jconrel.2020.07.038
- Plackett, D.; Letchford, K.; Jackson, J.; Burt, H. A review of nanocellulose as a novel vehicle for drug delivery. Nord. Pulp Paper Res. J., 2014, 29(1), 105-118. doi: 10.3183/npprj-2014-29-01-p105-118
- Tavakoli, F.; Shafiei, H.; Ghasemikhah, R. Kinetic and thermodynamics analysis: effect of eudragit polymer as drug release controller in electrospun nanofibers. Quarterly J. Iranian Chem. Commun., 2020, 8, 171-180.
- Jiffrin, R.; Razak, S.I.A.; Jamaludin, M.I.; Hamzah, A.S.A.; Mazian, M.A.; Jaya, M.A.T.; Nasrullah, M.Z.; Majrashi, M.; Theyab, A.; Aldarmahi, A.A.; Awan, Z.; Abdel-Daim, M.M.; Azad, A.K. Electrospun nanofiber composites for drug delivery: A review on current progresses. Polymers (Basel), 2022, 14(18), 3725. doi: 10.3390/polym14183725
- Wanjale, M.V.; S Jaikumar, V.; Sivakumar, K.C.; Ann Paul, R.; James, J.; Kumar, G.S.V. Supramolecular hydrogel based post-surgical implant system for hydrophobic drug delivery against glioma recurrence. Int. J. Nanomedicine, 2022, 17, 2203-2224. doi: 10.2147/IJN.S348559
- Babel, A.; Li, D.; Xia, Y.; Jenekhe, S.A. Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules, 2005, 38(11), 4705-4711. doi: 10.1021/ma047529r
- Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomedicine, 2013, 2997-3017.
- Chen, M.; Li, Y.F.; Besenbacher, F. Electrospun nanofibers‐mediated on‐demand drug release. Adv. Healthc. Mater., 2014, 3(11), 1721-1732. doi: 10.1002/adhm.201400166
- Achilleos, M; Krasia‐Christoforou, T Thermoresponsive Electrospun Polymer-based (Nano)fibers In: Temperature-Responsive Polymers; Wiley, 2018; pp. 329-355.
- Kamsani, N.H.; Haris, M.S.; Pandey, M.; Taher, M.; Rullah, K. Biomedical application of responsive ‘smart’ electrospun nanofibers in drug delivery system: A minireview. Arab. J. Chem., 2021, 14(7), 103199. doi: 10.1016/j.arabjc.2021.103199
- Wright, M.E.E.; Parrag, I.C.; Yang, M.; Santerre, J.P. Electrospun polyurethane nanofiber scaffolds with ciprofloxacin oligomer versus free ciprofloxacin: Effect on drug release and cell attachment. J. Control. Release, 2017, 250, 107-115. doi: 10.1016/j.jconrel.2017.02.008
- Chaturvedi, S.; Rastogi, V.; Kumar, M. An insight on nanofibers assisted localized delivery of anti-cancer drugs to breast for an effective breast cancer treatment. J. Drug Deliv. Sci. Technol., 2024, 93, 105447. doi: 10.1016/j.jddst.2024.105447
- Lin, T.C.; Lin, F.H.; Lin, J.C. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater., 2012, 8(7), 2704-2711. doi: 10.1016/j.actbio.2012.03.045
- Veres, T.; Voniatis, C.; Molnár, K.; Nesztor, D.; Fehér, D.; Ferencz, A.; Gresits, I.; Thuróczy, G.; Márkus, B.G.; Simon, F.; Nemes, N.M.; García-Hernández, M.; Reiniger, L.; Horváth, I.; Máthé, D.; Szigeti, K.; Tombácz, E.; Jedlovszky-Hajdu, A. An implantable magneto-responsive poly (aspartamide) based electrospun scaffold for hyperthermia treatment. Nanomaterials (Basel), 2022, 12(9), 1476. doi: 10.3390/nano12091476
- Valizadeh, A.; Asghari, S.; Abbaspoor, S.; Jafari, A.; Raeisi, M.; Pilehvar, Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(6), e1909. doi: 10.1002/wnan.1909
Supplementary files
