The Mesoionic 1,3,4-thiadiazolium Derivative, MI-D, is a Potential Drug for Treating Glioblastoma by Impairing Mitochondrial Functions Linked to Energy Provision in Glioma Cells
- Authors: Corrêa-Ferreira M.1, do Rocio Andrade Pires A.1, Miranda J.1, de Freitas Montin E.1, Barbosa I.2, Lima A.E.2, Rocha M.1, Martinez G.1, Cadena S.M.1
-
Affiliations:
- Department of Biochemistry and Molecular Biology, Federal University of Paraná
- Department of Chemistry, Federal Rural University of Rio de Janeiro
- Issue: Vol 25, No 6 (2025)
- Pages: 411-419
- Section: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694501
- DOI: https://doi.org/10.2174/0118715206329159241010052746
- ID: 694501
Cite item
Full Text
Abstract
Background:Mesoionic compound MI-D possesses important biological activities, such as antiinflammatory and antitumoral against melanoma and hepatocarcinoma. Glioblastoma is the most aggressive and common central nervous system tumor in adults. Currently, chemotherapies are not entirely effective, and the survival of patients diagnosed with glioblastoma is extremely short.
Objective:In this study, we aimed to evaluate the cytotoxicity of MI-D in noninvasive A172 glioblastoma cells and establish which changes in functions linked to energy provision are associated with this effect.
Methods:Cells A172 were cultured under glycolysis and phosphorylation oxidative conditions and evaluated: viability by the MTT method, oxygen consumption by high-resolution respirometry, levels of pyruvate, lactate, citrate, and ATP, and glutaminase and citrate synthase activities by spectrophotometric methods.
Results:Under glycolysis-dependent conditions, MI-D caused significant cytotoxic effects with impaired cell respiration, reducing the maximal capacity of the electron transport chain. However, A172 cells were more susceptible to MI-D effects under oxidative phosphorylation-dependent conditions. At the IC25, inhibition of basal and maximal respiration of A172 cells was observed, without stimulation of the glycolytic pathway or Krebs cycle, along with inhibition of the activity of glutaminase enzyme, resulting in a 30% ATP deficit. Additionally, independent of metabolic conditions, MI-D treatment induced cell death in A172 cells by apoptosis machinery/ processes.
Conclusion:The impairment of mitochondrial respiration by MI-D under the condition sustained by oxidative phosphorylation may enhance the cytotoxic effect on A172 glioma cells, although the mechanism of cell death relies on apoptosis.
Keywords
About the authors
Marília Corrêa-Ferreira
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Email: info@benthamscience.net
Amanda do Rocio Andrade Pires
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Email: info@benthamscience.net
Juan Miranda
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Email: info@benthamscience.net
Eduardo de Freitas Montin
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Email: info@benthamscience.net
Igor Barbosa
Department of Chemistry, Federal Rural University of Rio de Janeiro
Email: info@benthamscience.net
Aurea Echevarria Lima
Department of Chemistry, Federal Rural University of Rio de Janeiro
Email: info@benthamscience.net
Maria Rocha
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Email: info@benthamscience.net
Glaucia Martinez
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Email: info@benthamscience.net
Sílvia Maria Cadena
Department of Biochemistry and Molecular Biology, Federal University of Paraná
Author for correspondence.
Email: info@benthamscience.net
References
- Paiva, R.O.; Kneipp, L.F.; Dos Reis, C.M.; Echevarria, A. Mesoionic compounds with antifungal activity against Fusarium verticillioides. BMC Microbiol., 2015, 15(1), 11. doi: 10.1186/s12866-015-0340-9 PMID: 25649493
- Zhang, J.; Song, R.; Wu, S. Discovery of pyrido1,2-apyrimidinone mesoionic compounds incorporating a dithioacetal moiety as novel potential insecticidal agents. J. Agric. Food Chem., 2021, 69(50), 15136-15144. doi: 10.1021/acs.jafc.1c05823 PMID: 34878774
- Brandt, A.P.; Gozzi, G.J.; Pires, A.R.A. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2). Chem. Biol. Interact., 2016, 256, 154-160. doi: 10.1016/j.cbi.2016.07.007 PMID: 27417255
- Senff-Ribeiro, A.; Echevarria, A.; Silva, E.F.; Franco, C.R.C.; Veiga, S.S.; Oliveira, M.B.M. Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma. Br. J. Cancer, 2004, 91(2), 297-304. doi: 10.1038/sj.bjc.6601946 PMID: 15199390
- Corrêa-Ferreira, M.L.; Do Rocio, A.P.A.; Barbosa, I.R. The mesoionic compound MI-D changes energy metabolism and induces apoptosis in T98G glioma cells. Mol. Cell. Biochem., 2022, 477(8), 2033-2045. doi: 10.1007/s11010-022-04423-2 PMID: 35420333
- Newton, C.G.; Ramsden, C.A. Meso-ionic heterocycles (1976–1980). Tetrahedron, 1982, 38(20), 2965-3011. doi: 10.1016/0040-4020(82)80186-5
- Ferlay, J.; Ervik, M.; Lam, F. Global cancer observatory: Cancer today; , 2024. Available from: https://gco.iarc.fr/today
- Cancer Stat Facts, S.E.E.R. Brain and other nervous system cancer., 2023. Available from: https://seer.cancer.gov/statfacts/html/brain.html
- Obara-Michlewska, M.; Szeliga, M. Targeting glutamine addiction in gliomas. Cancers (Basel), 2020, 12(2), 310.
- Le Rhun, E.; Preusser, M.; Roth, P. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896. doi: 10.1016/j.ctrv.2019.101896 PMID: 31541850
- Zanders, E.D.; Svensson, F.; Bailey, D.S. Therapy for glioblastoma: Is it working? Drug Discov. Today, 2019, 24(5), 1193-1201. doi: 10.1016/j.drudis.2019.03.008 PMID: 30878561
- Minniti, G.; Muni, R.; Lanzetta, G.; Marchetti, P.; Enrici, R.M. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res., 2009, 29(12), 5171-5184. PMID: 20044633
- Colquhoun, A. Cell biology-metabolic crosstalk in glioma. Int. J. Biochem. Cell Biol., 2017, 89, 171-181. doi: 10.1016/j.biocel.2017.05.022 PMID: 28549626
- Cadena, S.M.S.C.; Carnieri, E.G.S.; Echevarria, A.; De Oliveira, M.B.M. Effect of MI‐D, a new mesoionic compound, on energy‐linked functions of rat liver mitochondria. FEBS Lett., 1998, 440(1-2), 46-50. doi: 10.1016/S0014-5793(98)01427-6 PMID: 9862422
- Senff-Ribeiro, A.; Echevarria, A.; Silva, E.F.; Veiga, S.S.; Oliveira, M.B.M. Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: A structure–activity relationship study. Anticancer Drugs, 2004, 15(3), 269-275. doi: 10.1097/00001813-200403000-00012 PMID: 15014361
- Gozzi, G.J.; Pires, A.R.A.; Valdameri, G. Selective cytotoxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2). PLoS One, 2015, 10(6), e0130046. doi: 10.1371/journal.pone.0130046 PMID: 26083249
- Trombetta-Lima, M.; Winnischofer, S.M.B.; Demasi, M.A.A. Isolation and characterization of novel RECK tumor suppressor gene splice variants. Oncotarget, 2015, 6(32), 33120-33133. doi: 10.18632/oncotarget.5305 PMID: 26431549
- Corrẽa, T.C.S.; Brohem, C.A.; Winnischofer, S.M.B. Downregulation of the RECK ‐tumor and metastasis suppressor gene in glioma invasiveness. J. Cell. Biochem., 2006, 99(1), 156-167. doi: 10.1002/jcb.20917 PMID: 16791855
- Grynberg, N.; Santos, A.C.; Echevarria, A. Synthesis and in vivo antitumor activity of new heterocyclic derivatives of the 1,3,4-thiadiazolium-2-aminide class. Anticancer Drugs, 1997, 8(1), 88-91. doi: 10.1097/00001813-199701000-00012 PMID: 9147617
- Souza, A.C.; Echevarria, A. Electronic effects on 13C NMR chemical shifts of substituted 1,3,4‐thiadiazolium salts. Magn. Reson. Chem., 2001, 39(4), 182-186. doi: 10.1002/mrc.812
- Reilly, T.P.; Bellevue, F.H., III; Woster, P.M.; Svensson, C.K. Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochem. Pharmacol., 1998, 55(6), 803-810. doi: 10.1016/S0006-2952(97)00547-9 PMID: 9586952
- Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improved MIT assay. J. Immunol. Methods, 1993, 157(1-2), 203-207. doi: 10.1016/0022-1759(93)90088-O PMID: 8423364
- Kumar, P; Nagarajan, A; Uchil, PD Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc, 2018, 2018(6), pdb.prot095497. doi: 10.1101/pdb.prot095497 PMID: 29858337
- Ruas, J.S.; Siqueira-Santos, E.S.; Amigo, I.; Rodrigues-Silva, E.; Kowaltowski, A.J.; Castilho, R.F. Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS One, 2016, 11(3), e0150967. doi: 10.1371/journal.pone.0150967 PMID: 26950698
- Czok, R; Lamprecht, W. Phosphoenolpyruvate and D-Glycerate-2- phosphate. Methods of enzymatic analysis 1974.
- Gutmann, I.; Wahlefeld, A. L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Methods in enzymatic analysis; Academic Press: New York, 1974; pp. 1464-1468.
- Board, M.; Humm, S.; Newsholme, E.A. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem. J., 1990, 265(2), 503-509. doi: 10.1042/bj2650503 PMID: 2302181
- Curthoys, N.P.; Lowry, O.H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem., 1973, 248(1), 162-168. doi: 10.1016/S0021-9258(19)44458-X PMID: 4692829
- Kenny, J.; Bao, Y.; Hamm, B. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr. Purif., 2003, 31(1), 140-148. doi: 10.1016/S1046-5928(03)00161-X PMID: 12963351
- Marroquin, L.D.; Hynes, J.; Dykens, J.A.; Jamieson, J.D.; Will, Y. Circumventing the crabtree effect: Replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci., 2007, 97(2), 539-547. doi: 10.1093/toxsci/kfm052 PMID: 17361016
- Aguer, C.; Gambarotta, D.; Mailloux, R.J. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One, 2011, 6(12), e28536. doi: 10.1371/journal.pone.0028536 PMID: 22194845
- Gohil, V.M.; Sheth, S.A.; Nilsson, R. Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol., 2010, 28, 249-255. doi: 10.1038/nbt.1606 PMID: 20160716
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 PMID: 942051
- Comelli, M.; Pretis, I.; Buso, A.; Mavelli, I. Mitochondrial energy metabolism and signalling in human glioblastoma cell lines with different PTEN gene status. J. Bioenerg. Biomembr., 2018, 50(1), 33-52. doi: 10.1007/s10863-017-9737-5 PMID: 29209894
- Nguyen, T.; Durán, R.V. Glutamine metabolism in cancer therapy. Cancer Drug Resist., 2018, 1, 126-138.
- Chlastakova, I; Liskova, M; Kudelova, J Dynamics of caspase3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach. in vitro Cell Dev Biol Anim, 2012, 48(9), 545-9.
- Rodrigues-Silva, E.; Siqueira-Santos, E.S.; Ruas, J.S. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J. Neurooncol., 2017, 133(3), 519-529. doi: 10.1007/s11060-017-2482-0 PMID: 28540666
- Molina, J.R.; Sun, Y.; Protopopova, M. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med., 2018, 24(7), 1036-1046. doi: 10.1038/s41591-018-0052-4 PMID: 29892070
- Dott, W.; Mistry, P.; Wright, J.; Cain, K.; Herbert, K.E. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol., 2014, 2, 224-233. doi: 10.1016/j.redox.2013.12.028 PMID: 24494197
- Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.S.; Kroemer, G.; Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res., 2018, 28(3), 265-280. doi: 10.1038/cr.2017.155 PMID: 29219147
- Wang, X.; Chen, Y.; Wang, J.; Liu, Z.; Zhao, S. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumour Biol., 2014, 35(2), 1641-1647. doi: 10.1007/s13277-013-1226-9 PMID: 24197975
- Pereira, R.A.; Pires, A.R.A.; Echevarria, A.; Sousa-Pereira, D.; Noleto, G.R.; Suter, C.C.S.M. The toxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2) is associated with mitochondrial dysfunction. Chem. Biol. Interact., 2021, 349, 109675. doi: 10.1016/j.cbi.2021.109675 PMID: 34563518
- Sheikh, T.N.; Patwardhan, P.P.; Cremers, S.; Schwartz, G.K. Targeted inhibition of glutaminase as a potential new approach for the treatment of NF1 associated soft tissue malignancies. Oncotarget, 2017, 8(55), 94054-94068. doi: 10.18632/oncotarget.21573
Supplementary files
