Alterations of Krüppel-like Factor Signaling and Potential Targeted Therapy for Hepatocellular Carcinoma

  • Authors: Fang R.1, Sha C.2, Xie Q.3, Yao D.4, Yao M.2
  • Affiliations:
    1. Research Center of Clinical Medicine, Department of Medical Immunology,, Affiliated Hospital of Nantong University, Medical School of Nantong University,
    2. Research Center of Clinical Medicine, Department of Medical Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University
    3. Department of Infectious Diseases,, Nantong Haian People’s Hospital
    4. Research Center of Clinical Medicine, Department of Medical ImmunologyCenter of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University
  • Issue: Vol 25, No 2 (2025)
  • Pages: 75-85
  • Section: Oncology
  • URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694474
  • DOI: https://doi.org/10.2174/0118715206301453240910044913
  • ID: 694474

Cite item

Full Text

Abstract

Krüppel-like factors (KLFs, total 18 members) from the zinc finger protein (ZFP) super-family have a wide range of biological functions in hepatocellular carcinoma (HCC). This paper reviews the recent some progresses of aberrant KLFs with their potential values for diagnosis, prognosis, and targeted therapy in HCC. The recent advances of oncogenic KLFs in the diagnosis, prognosis, and targeted therapy of HCC were reviewed based on the related literature on PUBMED and clinical investigation. Based on the recent literature, KLFs, according to biological functions in HCC, are divided into 4 subgroups: promoting (KLF5, 7, 8, 13), inhibiting (KLF3, 4, 9~12, 14, 17), dual (KLF2, 6), and unknown functions (KLF1, 15, 16, or 18 ?). HCC-related KLFs regulate downstream gene transcription during hepatocyte malignant transformation, participating in cell proliferation, apoptosis, invasion, and metastasis. Some KLFs have diagnostic or prognostic value, and other KLFs with inhibiting promoting function or over-expressing inhibiting roles might be molecular targets for HCC therapy. These data have suggested that Abnormal expressions of KLFs were associated with HCC progression. Among them, some KLFs have revealed the clinical values of diagnosis or prognosis, and other KLFs with the biological functions of promotion or inhibition might be as effectively molecular targets for HCC therapy.

About the authors

Rongfei Fang

Research Center of Clinical Medicine, Department of Medical Immunology,, Affiliated Hospital of Nantong University, Medical School of Nantong University,

Email: info@benthamscience.net

Chunxiu Sha

Research Center of Clinical Medicine, Department of Medical Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University

Email: info@benthamscience.net

Qun Xie

Department of Infectious Diseases,, Nantong Haian People’s Hospital

Email: info@benthamscience.net

Dengfu Yao

Research Center of Clinical Medicine, Department of Medical ImmunologyCenter of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University

Author for correspondence.
Email: info@benthamscience.net

Min Yao

Research Center of Clinical Medicine, Department of Medical Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Huang, D.Q.; Mathurin, P.; Cortez-Pinto, H.; Loomba, R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat. Rev. Gastroenterol. Hepatol., 2023, 20(1), 37-49. doi: 10.1038/s41575-022-00688-6 PMID: 36258033
  2. Du, Q.; Yuan, J.; Ren, Z. Hepatocellular carcinoma patients with hepatitis B virus infection exhibited favorable survival from immune checkpoint inhibitors: A systematic review and meta-analysis. Liver Cancer, 2024, 13(4), 344-354. doi: 10.1159/000534446 PMID: 39021889
  3. Shah, P.A.; Patil, R.; Harrison, S.A. NAFLD‐related hepatocellular carcinoma: The growing challenge. Hepatology, 2022, 77(1), 323-338. doi: 10.1002/hep.32542 PMID: 35478412
  4. Ghazanfar, H.; Javed, N.; Qasim, A.; Zacharia, G.S.; Ghazanfar, A.; Jyala, A.; Shehi, E.; Patel, H. Metabolic dysfunction-associated steatohepatitis and progression to hepatocellular carcinoma: A literature review. Cancers (Basel), 2024, 16(6), 1214. doi: 10.3390/cancers16061214 PMID: 38539547
  5. Crane, H.; Eslick, G.D.; Gofton, C.; Shaikh, A.; Cholankeril, G.; Cheah, M.; Zhong, J.H.; Svegliati-Baroni, G.; Vitale, A.; Kim, B.K.; Ahn, S.H.; Kim, M.N.; Strasser, S.I.; George, J. Global prevalence of metabolic dysfunction-associated fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Mol. Hepatol., 2024, 30(3), 436-448. doi: 10.3350/cmh.2024.0109 PMID: 38623613
  6. Sartoris, R.; Gregory, J.; Dioguardi, B.M.; Ronot, M.; Vilgrain, V. HCC advances in diagnosis and prognosis: Digital and Imaging. Liver Int., 2021, 41(S1)(Suppl. 1), 73-77. doi: 10.1111/liv.14865 PMID: 34155790
  7. Ganesan, P.; Kulik, L.M. Hepatocellular carcinoma. Clin. Liver Dis., 2023, 27(1), 85-102. doi: 10.1016/j.cld.2022.08.004 PMID: 36400469
  8. Ghavimi, S.; Apfel, T.; Azimi, H.; Persaud, A.; Pyrsopoulos, N.T. Management and treatment of hepatocellular carcinoma with immunotherapy: A review of current and future options. J. Clin. Transl. Hepatol., 2020, 8(2), 168-176. doi: 10.14218/JCTH.2020.00001 PMID: 32832397
  9. Yuce, K.; Ozkan, A.I. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene, 2024, 895, 148027. doi: 10.1016/j.gene.2023.148027 PMID: 38000704
  10. Liu, Y.; Ma, D.; Ji, C. Zinc fingers and homeoboxes family in human diseases. Cancer Gene Ther., 2015, 22(5), 223-226. doi: 10.1038/cgt.2015.16 PMID: 25857360
  11. Kim, C.K. Bialkowska, A.B.; Yang, V.W. SP and KLF transcription factors in digestive physiology and diseases. Gastroenterol., 2017, 152(8), 1845-1875. doi: 10.1053/j.gastro.2017.03.035 PMID: 28366734
  12. Jen, J.; Wang, Y.C. Zinc finger proteins in cancer progression. J. Biomed. Sci., 2016, 23(1), 53. doi: 10.1186/s12929-016-0269-9 PMID: 27411336
  13. Shi, Y.; Yao, M.; Shen, S.; Wang, L.; Yao, D. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer. Heliyon, 2024, 10(7), e28292. doi: 10.1016/j.heliyon.2024.e28292 PMID: 38560274
  14. Li, Y.; Zhao, X.; Xu, M.; Chen, M. Krüppel-like factors in glycolipid metabolic diseases. Mol. Biol. Rep., 2022, 49(8), 8145-8152. doi: 10.1007/s11033-022-07565-0 PMID: 35585376
  15. Eom, K.S.; Cheong, J.S.; Lee, S.J. Structural analyses of zinc finger domains for specific interactions with DNA. J. Microbiol. Biotechnol., 2016, 26(12), 2019-2029. doi: 10.4014/jmb.1609.09021 PMID: 27713215
  16. Fu, M.; Blackshear, P.J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol., 2017, 17(2), 130-143. doi: 10.1038/nri.2016.129 PMID: 27990022
  17. Ilsley, M.D.; Gillinder, K.R.; Magor, G.W.; Huang, S.; Bailey, T.L.; Crossley, M.; Perkins, A.C. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res., 2017, 45(11), 6572-6588. doi: 10.1093/nar/gkx441 PMID: 28541545
  18. Shao, M.; Ge, G.Z.; Liu, W.J.; Xiao, J.; Xia, H.J.; Fan, Y.; Zhao, F.; He, B.L.; Chen, C. Characterization and phylogenetic analysis of Kruppel-like transcription factor (KLF) gene family in tree shrews (Tupaia belangeri chinensis). Oncotarget, 2017, 8(10), 16325-16339. doi: 10.18632/oncotarget.13883. PMID: 28032601
  19. Ye, Q.; Liu, J.; Xie, K. Zinc finger proteins and regulation of the hallmarks of cancer. Histol. Histopathol., 2019, 34(10), 1097-1109. doi: 10.14670/HH-18-121 PMID: 31045237
  20. Jha, K.; Kumar, A.; Bhatnagar, K.; Patra, A.; Bhavesh, N.S.; Singh, B.; Chaudhary, S. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation. Biochim. Biophys. Acta. Gene Regul. Mech., 2024, 1867(1), 195003. doi: 10.1016/j.bbagrm.2023.195003 PMID: 37992989
  21. Kim, H.Y.; Jang, H.J.; Muthamil, S.; Shin, U.C.; Lyu, J.H.; Kim, S.W.; Go, Y.; Park, S.H.; Lee, H.G.; Park, J.H. Novel insights into regulators and functional modulators of adipogenesis. Biomed. Pharmacother., 2024, 177, 117073. doi: 10.1016/j.biopha.2024.117073 PMID: 38981239
  22. Yi, P.S.; Shu, Y.; Bi, W.X.; Zheng, X.B.; Feng, W.J.; He, L.Y.; Li, J.S. Emerging role of zinc finger protein A20 as a suppressor of hepatocellular carcinoma. J. Cell. Physiol., 2019, 234(12), 21479-21484. doi: 10.1002/jcp.28877 PMID: 31134613
  23. Zeng, L.; Zhu, Y.; Moreno, C.S.; Wan, Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin. Cancer Biol., 2023, 90, 29-44. doi: 10.1016/j.semcancer.2023.02.003 PMID: 36806560
  24. Siatecka, M.; Soni, S.; Planutis, A.; Bieker, J.J. Transcriptional activity of erythroid Kruppel-like factor (EKLF/KLF1) modulated by PIAS3 (protein inhibitor of activated STAT3). J. Biol. Chem., 2015, 290(15), 9929-9940. doi: 10.1074/jbc.M114.610246. PMID: 25713074
  25. Li, Z.Y.; Zhu, Y.X.; Chen, J.R.; Chang, X.; Xie, Z.Z. The role of KLF transcription factor in the regulation of cancer progression. Biomed. Pharmacother., 2023, 162, 114661. doi: 10.1016/j.biopha.2023.114661 PMID: 37068333
  26. Giarrizzo, M.; LaComb, J.F.; Bialkowska, A.B. The role of Krüppel-like factors in pancreatic physiology and pathophysiology. Int. J. Mol. Sci., 2023, 24(10), 8589. doi: 10.3390/ijms24108589 PMID: 37239940
  27. Zou, K.; Lu, X.; Ye, K.; Wang, C.; You, T.; Chen, J. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol. Ther., 2016, 17(1), 20-26. doi: 10.1080/15384047.2015.1108484
  28. Lin, J.; Tan, H.; Nie, Y.; Wu, D.; Zheng, W.; Lin, W.; Zhu, Z.; Yang, B.; Chen, X.; Chen, T. Krüppel‐like factor 2 inhibits hepatocarcinogenesis through negative regulation of the Hedgehog pathway. Cancer Sci., 2019, 110(4), 1220-1231. doi: 10.1111/cas.13961 PMID: 30719823
  29. Tian, B.; Zhou, L.; Wang, J.; Yang, P. miR-660-5p-loaded M2 macrophages-derived exosomes augment hepatocellular carcinoma development through regulating KLF3. Int. Immunopharmacol., 2021, 101(Pt B), 108157. doi: 10.1016/j.intimp.2021.108157
  30. Jia, X.; Li, L.; Wang, F.; Xue, Y.; Wu, T.; Jia, Q.; Li, Y.; Wu, C.; Chen, Y.; Wu, J.; Su, Y.; Wang, X.; Zhuang, T.; Dong, X.; Ling, J.; Yuan, J.; Li, Q. DUB3/KLF4 combats tumor growth and chemoresistance in hepatocellular carcinoma. Cell Death Discov., 2022, 8(1), 166. doi: 10.1038/s41420-022-00988-5 PMID: 35383144
  31. An, T.; Dong, T.; Zhou, H.; Chen, Y.; Zhang, J.; Zhang, Y.; Li, Z.; Yang, X. The transcription factor Krüppel-like factor 5 promotes cell growth and metastasis via activating PI3K/AKT/Snail signaling in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2019, 508(1), 159-168. doi: 10.1016/j.bbrc.2018.11.084 PMID: 30473218
  32. Vetter, D.; Cohen-Naftaly, M.; Villanueva, A.; Lee, Y.A.; Kocabayoglu, P.; Hannivoort, R.; Narla, G.; M Llovet, J.; Thung, S.N.; Friedman, S.L. Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing. Hepatology, 2012, 56(4), 1361-1370. doi: 10.1002/hep.25810 PMID: 22535637
  33. Wen, P.H.; Wang, D.Y.; Zhang, J.K.; Wang, Z.H.; Pan, J.; Shi, X.Y.; Yang, H.; Zhang, S.J.; Guo, W.Z. Kruppel-like factor 6 suppresses growth and invasion of hepatocellular carcinoma cells in vitro and in vivo. Int. J. Immunopathol. Pharmacol., 2016, 29(4), 666-675. doi: 10.1177/0394632016655171 PMID: 27510817
  34. Guo, Y.; Chai, B.; Jia, J.; Yang, M.; Li, Y.; Zhang, R.; Wang, S.; Xu, J. KLF7/VPS35 axis contributes to hepatocellular carcinoma progression through CCDC85C-activated β-catenin pathway. Cell Biosci., 2021, 11(1), 73. doi: 10.1186/s13578-021-00585-6 PMID: 33858520
  35. Wang, M.D.; Xing, H.; Li, C.; Liang, L.; Wu, H.; Xu, X.F.; Sun, L.Y.; Wu, M.C.; Shen, F.; Yang, T. A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma. Cancer Cell Int., 2020, 20(1), 422. doi: 10.1186/s12935-020-01513-3 PMID: 32874135
  36. Sun, J.; Wang, B.; Liu, Y.; Zhang, L.; Ma, A.; Yang, Z.; Ji, Y.; Liu, Y. Transcription factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and positively regulates p53 expression. Cancer Lett., 2014, 355(1), 25-33. doi: 10.1016/j.canlet.2014.09.022
  37. Li, D.; Lu, L.; Liu, M.; Sun, J. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting micro RNA-30a-5p. Bioengineered., 2022, 13(4), 11296-11308. doi: 10.1080/21655979.2022.2068289. PMID: 35484972
  38. Hujie, G.; Zhou, S.; Zhang, H.; Qu, J.; Xiong, X.; Hujie, O.; Liao, C.; Yang, S. MicroRNA-10b regulates epithelial–mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma. Cancer Cell Int., 2018, 18(1), 10. doi: 10.1186/s12935-018-0508-0 PMID: 29375271
  39. Wang, J.; Pu, J.; Zhang, Y.; Yao, T.; Luo, Z.; Li, W.; Xu, G.; Liu, J.; Wei, W.; Deng, Y. DANCR contributed to hepatocellular carcinoma malignancy via sponging miR‐216a‐5p and modulating KLF12. J. Cell. Physiol., 2019, 234(6), 9408-9416. doi: 10.1002/jcp.27625 PMID: 30430564
  40. Chen, C.C.; Xie, X.M.; Zhao, X.K.; Zuo, S.; Li, H.Y. Krüppel-like factor 13 promotes HCC progression by transcriptional regulation of HMGCS1-mediated cholesterol synthesis. J. Clin. Transl. Hepatol., 2022, 10(6), 1125-1137. doi: 10.14218/JCTH.2021.00370. PMID: 36381108
  41. Zhou, H.; Chen, J.; Fan, M.; Cai, H.; Dong, Y.; Qiu, Y.; Zhuang, Q.; Lei, Z.; Li, M.; Ding, X.; Yan, P.; Lin, A.; Zheng, S.; Yan, Q. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2. J. Exp. Clin. Cancer Res., 2023, 42(1), 5. doi: 10.1186/s13046-022-02562-4 PMID: 36600258
  42. Jiang, Z.; Elsarrag, S.Z.; Duan, Q.; LaGory, E.L.; Wang, Z.; Alexanian, M.; McMahon, S.; Rulifson, I.C.; Winchester, S.; Wang, Y.; Vaisse, C.; Brown, J.D.; Quattrocelli, M.; Lin, C.Y.; Haldar, S.M. KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. Sci. Adv., 2022, 8(10), eabj2917. doi: 10.1126/sciadv.abj2917 PMID: 35263131
  43. Pommerenke, C.; Nagel, S.; Haake, J.; Koelz, A.L.; Christgen, M.; Steenpass, L.; Eberth, S. Molecular characterization and subtyping of breast cancer cell lines provide novel Insights into cancer relevant genes. Cells, 2024, 13(4), 301. doi: 10.3390/cells13040301 PMID: 38391914
  44. Ni, D.; Qi, Z.; Wang, Y.; Man, Y.; Pang, J.; Tang, W.; Chen, J.; Li, J.; Li, G. KLF15-activated MARCH2 boosts cell proliferation and epithelial-mesenchymal transition and presents diagnostic significance for hepatocellular carcinoma. Exp. Cell Res., 2024, 440(1), 114117. doi: 10.1016/j.yexcr.2024.114117 PMID: 38848952
  45. Liu, F.Y.; Deng, Y.L.; Li, Y.; Zeng, D.; Zhou, Z.Z.; Tian, D.A.; Liu, M. Down-regulated KLF17 expression is associated with tumor invasion and poor prognosis in hepatocellular carcinoma. Med. Oncol., 2013, 30(1), 425. doi: 10.1007/s12032-012-0425-3 PMID: 23325444
  46. Sun, N.; Shen, C.; Zhang, L.; Wu, X.; Yu, Y.; Yang, X.; Yang, C.; Zhong, C.; Gao, Z.; Miao, W.; Yang, Z.; Gao, W.; Hu, L.; Williams, K.; Liu, C.; Chang, Y.; Gao, Y. Hepatic Krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance. Gut, 2021, 70(11), 2183-2195. doi: 10.1136/gutjnl-2020-321774 PMID: 33257471
  47. Tseng, P.T.; Zeng, B.Y.; Wang, H.Y.; Zeng, B.S.; Liang, C.S.; Chen, Y.C.B.; Stubbs, B.; Carvalho, A.F.; Brunoni, A.R.; Su, K.P.; Tu, Y.K.; Wu, Y.C.; Chen, T.Y.; Li, D.J.; Lin, P.Y.; Chen, Y.W.; Hsu, C.W.; Hung, K.C.; Shiue, Y.L.; Li, C.T. Efficacy and acceptability of noninvasive brain stimulation for treating posttraumatic stress disorder symptoms: A network meta‐analysis of randomized controlled trials. Acta Psychiatr. Scand., 2024, 150(1), 5-21. doi: 10.1111/acps.13688 PMID: 38616056
  48. Cervello, M.; Augello, G.; Cocco, L.; Ratti, S.; Follo, M.Y.; Martelli, A.M.; Cusimano, A.; Montalto, G.; McCubrey, J.A. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH. Adv. Biol. Regul., 2024, 92, 101032. doi: 10.1016/j.jbior.2024.101032 PMID: 38693042
  49. Pei, J.; Grishin, N.V. C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond. Gene., 2015, 573(1), 91-99. doi: 10.1016/j.gene.2015.07.031. PMID: 26187067
  50. Yerra, V.G.; Drosatos, K. Specificity proteins (SP) and Krüppel-like factors (KLF) in liver physiology and pathology. Int. J. Mol. Sci., 2023, 24(5), 4682. doi: 10.3390/ijms24054682 PMID: 36902112
  51. Zhang, Y.; Yao, C.; Ju, Z.; Jiao, D.; Hu, D.; Qi, L.; Liu, S.; Wu, X.; Zhao, C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol., 2023, 13, 1080720. doi: 10.3389/fonc.2023.1080720. PMID: 36761967
  52. Mancera-Rincón, P.; Luna-España, M.C.; Rincon, O.; Guzmán, I.; Alvarez, M. Maturity-onset diabetes of the young type 7 (MODY7) and the krüppellike factor 11 mutation (KLF11). A review. Curr. Diabetes Rev., 2024, 20(1), e210323214817. doi: 10.2174/1573399819666230321114456 PMID: 36944622
  53. Orzechowska-Licari, E.J. LaComb, J.F.; Mojumdar, A.; Bialkowska, A.B. SP and KLF transcription factors in cancer metabolism. Int. J. Mol. Sci., 2022, 23(17), 9956. doi: 10.3390/ijms23179956 PMID: 36077352
  54. Abe, M.; Saeki, N.; Ikeda, Y.; Ohba, S. Kruppel-like factors in skeletal physiology and pathologies. Int. J. Mol. Sci., 2022, 23(23), 15174. doi: 10.3390/ijms232315174 PMID: 36499521
  55. Jiang, H.; Shi, X.; Ye, G.; Xu, Y.; Xu, J.; Lu, J.; Lu, W. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma. OncoTargets Ther., 2019, 12, 7429-7436. doi: 10.2147/OTT.S214336 PMID: 31571902
  56. Maehara, O.; Sato, F.; Natsuizaka, M.; Asano, A.; Kubota, Y.; Itoh, J.; Tsunematsu, S.; Terashita, K.; Tsukuda, Y.; Nakai, M.; Sho, T.; Suda, G.; Morikawa, K.; Ogawa, K.; Chuma, M.; Nakagawa, K.; Ohnishi, S.; Komatsu, Y.; Whelan, K.A.; Nakagawa, H.; Takeda, H.; Sakamoto, N. A pivotal role of Krüppel-like factor 5 in regulation of cancer stem-like cells in hepatocellular carcinoma. Cancer Biol. Ther., 2015, 16(10), 1453-1461. doi: 10.1080/15384047.2015.1070992 PMID: 26176896
  57. Liang, H.; Sun, H.; Yang, J.; Yi, C. miR 145 5p reduces proliferation and migration of hepatocellular carcinoma by targeting KLF5. Mol. Med. Rep., 2018, 17(6), 8332-8338. doi: 10.3892/mmr.2018.8880 PMID: 29658584
  58. Wei, W.; Chen, W.; He, N. HDAC4 induces the development of asthma by increasing Slug-upregulated CXCL12 expression through KLF5 deacetylation. J. Transl. Med., 2021, 19(1), 258. doi: 10.1186/s12967-021-02812-7 PMID: 34118928
  59. Lin, J.; Liu, P.; Sun, K.; Jiang, L.; Liu, Y.; Huang, Y.; Liu, J.; Shi, M.; Zhang, J.; Wang, T.; Shen, B. Comprehensive analysis of KLF family reveals KLF6 as a promising prognostic and immune biomarker in pancreatic ductal adenocarcinoma. Cancer Cell Int., 2024, 24(1), 177. doi: 10.1186/s12935-024-03369-3 PMID: 38773440
  60. Mao, Y.; Chen, Y.; Zhang, Z. Molecular function of Krüppel-like factor 7 in biology. Acta Biochim Biophys Sin, 2023, 55(5), 713-725. doi: 10.3724/abbs.2023061. PMID: 37227154
  61. Long, J.; Liu, L.; Yang, X.; Zhou, X.; Lu, X.; Qin, L. LncRNA NUTM2A-AS1 aggravates the progression of hepatocellular carcinoma by activating the miR-186-5p/KLF7-mediated Wnt/beta-catenin pathway. Hum. Cell, 2022, 36(1), 312-328. doi: 10.1007/s13577-022-00802-5 PMID: 36242728
  62. Cheng, S.; Zhang, X.; Xu, Y.; Dai, X.; Li, J.; Zhang, T.; Chen, X. Krüppel-like factor 8 regulates VEGFA expression and angiogenesis in hepatocellular carcinoma. Sci. Rep., 2018, 8(1), 17415. doi: 10.1038/s41598-018-35786-6 PMID: 30479372
  63. Xie, X.; Chen, C.; Feng, S.; Zuo, S.; Zhao, X.; Li, H. Acyl-CoA thioesterase 7 is transcriptionally activated by krüppel-like factor 13 and promotes the progression of hepatocellular carcinoma. J. Hepatocell. Carcinoma, 2021, 8, 1623-1641. doi: 10.2147/JHC.S338353 PMID: 34993160
  64. Wu, W.; Liu, S.; Liang, Y.; Zhou, Z.; Liu, X. MiR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker. Cancer Cell Int., 2017, 17(1), 31. doi: 10.1186/s12935-017-0386-x PMID: 28239300
  65. Tian, X.; Dai, S.; Sun, J.; Jin, G.; Jiang, S.; Meng, F.; Li, Y.; Wu, D.; Jiang, Y. F-box protein FBXO22 mediates polyubiquitination and degradation of KLF4 to promote hepatocellular carcinoma progression. Oncotarget, 2015, 6(26), 22767-22775. doi: 10.18632/oncotarget.4082 PMID: 26087183
  66. Li, Y.; Yu, S.; Li, L.; Chen, J.; Quan, M.; Li, Q.; Gao, Y. KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis., 2020, 11(4), 299. doi: 10.1038/s41419-020-2479-z PMID: 32350244
  67. He, H.; Wu, Z.; Li, S.; Chen, K.; Wang, D.; Zou, H.; Chen, H.; Li, Y.; Liu, Z.; Qu, C. TRAF7 enhances ubiquitin-degradation of KLF4 to promote hepatocellular carcinoma progression. Cancer Lett., 2020, 469, 380-389. doi: 10.1016/j.canlet.2019.11.012 PMID: 31730901
  68. Zhao, Q.; Cai, W.; Zhang, X.; Tian, S.; Zhang, J.; Li, H.; Hou, C.; Ma, X.; Chen, H.; Huang, B.; Chen, D. RYBP expression is regulated by KLF4 and Sp1 and is related to hepatocellular carcinoma prognosis. J. Biol. Chem., 2017, 292(6), 2143-2158. doi: 10.1074/jbc.M116.770727 PMID: 28028181
  69. Yao, S.; Tian, C.; Ding, Y.; Ye, Q.; Gao, Y.; Yang, N.; Li, Q. Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1. Oncotarget, 2106, 7(27), 42566-42578. doi: 10.18632/oncotarget.9934 PMID: 27302923
  70. Muñoz, Ú.; Puche, J.E.; Hannivoort, R.; Lang, U.E.; Cohen-Naftaly, M.; Friedman, S.L. Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1. Mol. Cancer Res., 2012, 10(9), 1216-1227. doi: 10.1158/1541-7786.MCR-12-0213 PMID: 22859706
  71. Zhenzhen, Z.; De’an, T.; Limin, X.; Wei, Y.; Min, L. New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma. Hepatogastroenterology, 2012, 59(114), 473-476. doi: 10.5754/hge11283 PMID: 21940380
  72. Kong, L.M.; Yao, L.; Lu, N.; Dong, Y.L.; Zhang, J.; Wang, Y.Q.; Liu, L.; Zhang, H.L.; Huang, J.G.; Liao, C.G. Interaction of KLF6 and Sp1 regulates basigin-2 expression mediated proliferation, invasion and metastasis in hepatocellular carcinoma. Oncotarget, 2016, 7(19), 27975-27987. doi: 10.18632/oncotarget.8564
  73. Brown, A.R.; Alhallak, I.; Simmen, R.C.M.; Melnyk, S.B.; Heard-Lipsmeyer, M.E.; Montales, M.T.E.; Habenicht, D.; Van, T.T.; Simmen, F.A. Krüppel-like Factor 9 (KLF9) suppresses hepatocellular carcinoma (HCC)-promoting oxidative stress and inflammation in mice fed high-fat diet. Cancers, 2022, 14(7), 1737. doi: 10.3390/cancers14071737. PMID: 35406507
  74. Zhou, S.; Tang, X.; Tang, F. Krüppel-like factor 17, a novel tumor suppressor: its low expression is involved in cancer metastasis. Tumour Biol., 2016, 37(2), 1505-1513. doi: 10.1007/s13277-015-4588-3 PMID: 26662959
  75. Ali, A.; Zhang, P.; Liangfang, Y.; Wenshe, S.; Wang, H.; Lin, X.; Dai, Y.; Feng, X.; Moses, R.; Wang, D.; Li, X.; Xiao, J. KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression. Cell Death Dis., 2015, 6(3), e1681. doi: 10.1038/cddis.2015.48 PMID: 25766320
  76. Sun, Z.; Han, Q.; Zhou, N.; Wang, S.; Lu, S.; Bai, C.; Zhao, R.C. MicroRNA‐9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol. Oncol., 2013, 7(5), 884-894. doi: 10.1016/j.molonc.2013.04.007 PMID: 23684102
  77. Pessino, G.; Scotti, C.; Maggi, M. Immuno-hub consortium. hepatocellular carcinoma: Old and emerging therapeutic targets. Cancers (Basel), 2024, 16(5), 901. doi: 10.3390/cancers16050901 PMID: 38473265
  78. Garcia, A.; Mathew, S.O. Racial/ethnic disparities and immunotherapeutic advances in the treatment of hepatocellular carcinoma. Cancers (Basel), 2024, 16(13), 2446. doi: 10.3390/cancers16132446 PMID: 39001508
  79. Sai, W.L.; Wang, L.; Sun, J.Y.; Yang, J.L.; Yao, M.; Yao, D.F. Value of abnormal expression of Krüppel-like zinc-finger protein transcription factor 5 in the diagnosis and prognosis of liver cancer. Zhonghua Gan Zang Bing Za Zhi., 2021, 29(8), 781-787. doi: 10.3760/cma.j.cn501113-20200721-00405. PMID: 34517461
  80. Xue, M.; Zhou, C.; Zheng, Y.; Zhang, Z.; Wang, S.; Fu, Y.; Atyah, M.; Xue, X.; Zhu, L.; Dong, Q.; Jia, H.; Ren, N.; Hu, R. The association between KLF4 as a tumor suppressor and the prognosis of hepatocellular carcinoma after curative resection. Aging (Albany NY), 2020, 12(15), 15566-15580. doi: 10.18632/aging.103592 PMID: 32756012
  81. López-Cánovas, J.L.; del Rio-Moreno, M.; García-Fernandez, H.; Jiménez-Vacas, J.M.; Moreno-Montilla, M.T.; Sánchez-Frias, M.E.; Amado, V. L-López, F.; Fondevila, M.F.; Ciria, R.; Gómez-Luque, I.; Briceño, J.; Nogueiras, R.; de la Mata, M.; Castaño, J.P.; Rodriguez-Perálvarez, M.; Luque, R.M.; Gahete, M.D. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett., 2021, 496, 72-83. doi: 10.1016/j.canlet.2020.10.010 PMID: 33038489
  82. Chao, J.; Zhao, S.; Sun, H. Dedifferentiation of hepatocellular carcinoma: molecular mechanisms and therapeutic implications. Am. J. Transl. Res., 2020, 12(5), 2099-2109. PMID: 32509204
  83. Srinivas, A.N.; Suresh, D.; Chidambaram, S.B.; Santhekadur, P.K.; Kumar, D.P. Apoptosis antagonizing transcription factor‐mediated liver damage and inflammation to cancer: Therapeutic intervention by curcumin in experimental metabolic dysfunction associated steatohepatitis‐hepatocellular carcinoma. J. Cell. Physiol., 2024, 239(1), e31151. doi: 10.1002/jcp.31151 PMID: 37942831
  84. Zarlashat, Y.; Mushtaq, H.; Pham, L.; Abbas, W.; Sato, K. Advancements in immunotherapeutic ireatments for hepatocellular carcinoma: Potential of combination therapies. Int. J. Mol. Sci., 2024, 25(13), 6830. doi: 10.3390/ijms25136830 PMID: 38999940
  85. Liu, M.; Zhao, T.; Zhang, J.; Bu, B.; Zhang, R.; Xia, X.; Geng, J. Estimating the key outcomes and hepatocellular carcinoma risk in patients in immune‐tolerant phase of chronic hepatitis B virus infection: A systematic review and meta‐analysis. Rev. Med. Virol., 2024, 34(4), e2570. doi: 10.1002/rmv.2570 PMID: 38964866
  86. Xu, G.; Ye, J.; Liu, X.J.; Zhang, N.P.; Zhao, Y.M.; Fan, J.; Liu, X.P.; Wu, J. Activation of pluripotent genes in hepatic progenitor cells in the transition of nonalcoholic steatohepatitis to pre-malignant lesions. Lab. Invest., 2017, 97(10), 1201-1217. doi: 10.1038/labinvest.2017.84 PMID: 28869588
  87. Lu, X.J.; Shi, Y.; Chen, J.L.; Ma, S. Krüppel-like factors in hepatocellular carcinoma. Tumour Biol., 2015, 36(2), 533-541. doi: 10.1007/s13277-015-3127-6 PMID: 25652467
  88. Sun, H.; Peng, Z.; Tang, H.; Xie, D.; Jia, Z.; Zhong, L.; Zhao, S.; Ma, Z.; Gao, Y.; Zeng, L.; Luo, R.; Xie, K. Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-β signaling in and promote progression of hepatocellular carcinoma. Oncogene, 2017, 36(21), 2957-2968. doi: 10.1038/onc.2016.447 PMID: 28192402
  89. Chen, J.; Zhang, L.; Ma, S.; Lu, G.; Wang, D. The aberrant expressions of MACC1, ZEB1, and KLF4 in hepatocellular carcinoma and their clinical significance. Int. J. Clin. Exp. Pathol., 2019, 12(9), 3653-3661. PMID: 31934216
  90. Cai, M.; Shao, W.; Yu, H.; Hong, Y.; Shi, L. Paeonol inhibits cell proliferation, migration and invasion and induces apoptosis in hepatocellular carcinoma by regulating miR-21-5p/KLF6 axis. Cancer Manag. Res., 2020, 12, 5931-5943. doi: 10.2147/CMAR.S254485 PMID: 32765094
  91. Wang, Y.G.; Liu, J.; Shi, M.; Chen, F.X. LncRNA DGCR5 represses the development of hepatocellular carcinoma by targeting the miR‐346/KLF14 axis. J. Cell. Physiol., 2019, 234(1), 572-580. doi: 10.1002/jcp.26779 PMID: 30216442
  92. Dong, X.; Wang, F.; Xue, Y.; Lin, Z.; Song, W.; Yang, N.; Li, Q. MicroRNA 9 5p down- regulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway. Int. J. Mol. Med., 2019, 43(3), 1417-1429. doi: 10.3892/ijmm.2019.4062. PMID: 30664155
  93. Pang, J.; Li, Z.; Wang, G.; Li, N.; Gao, Y.; Wang, S. miR‐214‐5p targets KLF5 and suppresses proliferation of human hepatocellular carcinoma cells. J. Cell. Biochem., 2019, 120(2), 1850-1859. doi: 10.1002/jcb.27498 PMID: 30206974
  94. Li, J.C.; Yang, X.R.; Sun, H.X.; Xu, Y.; Zhou, J.; Qiu, S.J.; Ke, A.W.; Cui, Y.H.; Wang, Z.J.; Wang, W.M.; Liu, K.D.; Fan, J. Up-regulation of Krüppel-like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma. Gastroenterology, 2010, 139(6), 2146-2157.e12. doi: 10.1053/j.gastro.2010.08.004 PMID: 20728449
  95. Gao, W.; Lu, Y.X.; Wang, F.; Sun, J.; Bian, J.X.; Wu, H.Y. miRNA-217 inhibits proliferation of hepatocellular carcinoma cells by regulating KLF5. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7874-7883. doi: 10.26355/eurrev_201909_18997 PMID: 31599412
  96. Li, Y.; Tu, S.; Zeng, Y.; Zhang, C.; Deng, T.; Luo, W.; Lian, L.; Chen, L.; Xiong, X.; Yan, X. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(5), 485-494. doi: 10.1093/abbs/gmaa024 PMID: 32318691
  97. Yang, J.L.; Fang, R.F.; Xie, Q.; Tai, B.J.; Yao, D.F.; Yao, M. Overexpression of tuftelin and KLF-5 and its clinicopathological features in hepatitis B virus-related hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi, 2024, 32(2), 148-154. doi: 10.3760/cma.j.cn501113-20231107-00174 PMID: 38514264
  98. Shen, Y.N.; He, H.G.; Shi, Y.; Cao, J.; Yuan, J.Y.; Wang, Z.C.; Shi, C.F.; Zhu, N.; Wei, Y.P.; Liu, F.; Huang, J.L.; Yang, G.S.; Lu, J.H. Krüppel‐like factor 8 promotes cancer stem cell‐like traits in hepatocellular carcinoma through Wnt/β‐catenin signaling. Mol. Carcinog., 2017, 56(2), 751-760. doi: 10.1002/mc.22532 PMID: 27478926
  99. Cercek, A.; Wheler, J.; Murray, P.E.; Zhou, S.; Saltz, L. Phase 1 study of APTO-253 HCl, an inducer of KLF4, in patients with advanced or metastatic solid tumors. Invest. New Drugs, 2015, 33(5), 1086-1092. doi: 10.1007/s10637-015-0273-z PMID: 26268924
  100. He, A.D.; Xie, W.; Song, W.; Ma, Y.Y.; Liu, G.; Liang, M.L.; Da, X.W.; Yao, G.Q.; Zhang, B.; Gao, C.J.; Xiang, J.; Ming, Z.Y. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6. Sci. Rep., 2017, 7(1), 3989. doi: 10.1038/s41598-017-02801-1 PMID: 28638139
  101. Liu, L.; Yang, X.; Li, N.F.; Lin, L.; Luo, H. Circ_0015756 promotes proliferation, invasion and migration by microRNA-7- dependent inhibition of FAK in hepatocellular carcinoma. Cell Cycle., 2019, 18(21), 2939-2953. doi: 10.1080/15384101.2019.1664223. PMID: 31522588
  102. Wang, T.; Feng, L.; Shi, Z.; Yang, L.; Yu, X.; Wu, J.; Sun, J.; Zhang, J.; Feng, Y.; Wang, W. A negative feedback loop between KLF9 and the EMT program dictates metastasis of hepatocellular carcinoma. J. Cell. Mol. Med., 2023, 27(16), 2372-2384. doi: 10.1111/jcmm.17823 PMID: 37400979
  103. Hossen, M.A.; Reza, M.S.; Rana, M.M.; Hossen, M.B.; Shoaib, M.; Mollah, M.N.H.; Han, C. Identification of most representative hub-genes for diagnosis, prognosis, and therapies of hepatocellular carcinoma. Chin. Clin. Oncol., 2024, 13(3), 32. doi: 10.21037/cco-23-151 PMID: 38984486
  104. Sundi, P.R.I.O.; Thipe, V.C.; Omar, M.A.; Adelusi, T.I.; Gedefa, J.; Olaoba, O.T. Preclinical human and murine models of hepatocellular carcinoma (HCC). Clin. Res. Hepatol. Gastroenterol., 2024, 48(7), 102418. doi: 10.1016/j.clinre.2024.102418 PMID: 39004339

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers