Precision Therapy for Prostate Cancer: Advancements in Polymeric Nanocarrier Systems


Cite item

Full Text

Abstract

Introduction: Prostate cancer is a major worldwide health concern, and existing treatments often face challenges such as drug resistance, systemic toxicity, and insufficient targeting. Polymeric nanocarriers are currently employed as sophisticated tools in the field of oncology, offering the possibility to augment the administration and efficacy of anticancer therapies. In order to effectively eradicate prostate cancer, this review delves into the function of polymeric nanocarriers.

Methods: Databases such as PubMed, ScienceDirect, and Google Scholar were utilized to do a comprehensive literature assessment. For this search, we used terms like \"polymeric nanocarriers,\" \"prostate cancer,\" \"drug delivery,\" and \"nanotechnology.\"

Results: Studies have shown that polymeric nanocarriers greatly improve the delivery and effectiveness of treatments for prostate cancer. Nanocarriers enhance the solubility, stability, and bioavailability of drugs, resulting in improved therapeutic effects. Functionalization using targeting ligands, such as folic acid and prostate-specific membrane antigen (PSMA) antibodies, has demonstrated the ability to enhance targeted specificity, resulting in a decrease in off-target effects and systemic toxicity. Polymeric nanocarriers facilitate precise and prolonged drug delivery, leading to elevated drug levels in tumor tissues.

Conclusion: Polymeric nanocarriers are a notable breakthrough in the management of prostate cancer, providing precise medication administration, decreased toxicity, and improved therapy effectiveness. However, additional study is necessary to enhance the design of nanocarriers, evaluate their long-term safety, and enable their use in clinical applications. Continued interdisciplinary research and collaboration are essential for addressing current obstacles and maximizing the promise of polymeric nanocarriers in the treatment of prostate cancer.

About the authors

Lalit Kumar

Department of Pharmaceutics, GNA School of Pharmacy, GNA University

Author for correspondence.
Email: info@benthamscience.net

Ritesh Rana

Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER)

Email: info@benthamscience.net

Nusrat Shaikh

Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College

Email: info@benthamscience.net

Sumit Kumar

Department of Pharmaceutical Chemistry, Himachal Institute of Pharmaceutical Education and Research (HIPER)

Email: info@benthamscience.net

Vikas Aggarwal

, Senior Pharmacovigilance Specialist, Continuum India LLP

Email: info@benthamscience.net

Komal Komal

Department of Pharmacology, Chandigarh College of Pharmacy

Email: info@benthamscience.net

Vuluchala Jyothiraditya

Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences

Email: info@benthamscience.net

References

  1. Schatten, H. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv. Exp. Med. Biol., 2018, 1095, 1-14. doi: 10.1007/978-3-319-95693-0_1 PMID: 30229546
  2. Li, J.; Zhang, Q. Polymeric nanomedicines for prostate cancer treatment: Progress and perspectives. J. Nanobiotechnology, 2023, 21, 125.
  3. Deshmukh, R.; Singh, V.; Harwansh, R.K.; Agrawal, R.; Garg, A.; Singh, S.; Elossaily, G.M.; Ansari, M.N.; Ali, N.; Prajapati, B.G. Emerging trends of nanomedicines in the management of prostate cancer: Perspectives and potential applications. Pharmaceutics, 2024, 16(3), 297. doi: 10.3390/pharmaceutics16030297 PMID: 38543191
  4. Uhr, A.; Glick, L.; Gomella, L.G. An overview of biomarkers in the diagnosis and management of prostate cancer. Can. J. Urol., 2020, 27(S3), 24-27. PMID: 32875999
  5. Habib, A.; Jaffar, G.; Khalid, M.S.; Hussain, Z.; Zainab, S.W.; Ashraf, Z.; Haroon, A.; Javed, R.; Khalid, B.; Habib, P. Risk factors associated with prostate cancer. J. Drug Deliv. Ther., 2021, 11(2), 188-193. doi: 10.22270/jddt.v11i2.4758
  6. Sayegh, N.; Swami, U.; Agarwal, N. Recent advances in the management of metastatic prostate cancer. JCO Oncol. Pract., 2022, 18(1), 45-55. doi: 10.1200/OP.21.00206 PMID: 34473525
  7. Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
  8. Gupta, S. Prostate cancer chemoprevention: Models, limitations and potential (Review). Int. J. Oncol., 2004, 25(4), 1133-1148. PMID: 15375566
  9. Pirtskhalaishvili, G.; Hrebinko, R.L.; Nelson, J.B. The treatment of prostate cancer: An overview of current options. Cancer Pract., 2001, 9(6), 295-306. doi: 10.1111/j.1523-5394.2001.96009.pp.x PMID: 11879332
  10. Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer: A review. JAMA, 2017, 317(24), 2532-2542. doi: 10.1001/jama.2017.7248 PMID: 28655021
  11. Hurwitz, M.D. Chemotherapy and radiation for prostate cancer. Transl. Androl. Urol., 2018, 7(3), 390-398. doi: 10.21037/tau.2018.03.07 PMID: 30050799
  12. Gupta, S.; Gupta, P.K.; Dharanivasan, G.; Verma, R.S. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy. Nanomedicine, 2017, 12(23), 2675-2692. doi: 10.2217/nnm-2017-0236 PMID: 29098929
  13. Upadhyay, T.K.; Ali, M.I.; Khan, F.; Goel, H.; Mathur, M.; Goyal, K.; Moin, S.; Pandey, P.; Tanwar, P.; Sharangi, A.B.; Gautam, S.D.C.; Kapdi, J.K.; Patel, K.I.; Patel, M.V.; Parmar, A.M.; Kamal, M.A. Nanoparticles mediated target-specific drug delivery in prostate cancer: An in-depth review. Curr. Med. Chem., 2022, 29(24), 4170-4184. doi: 10.2174/0929867329666211221112312 PMID: 34939536
  14. Adekiya, T.A.; Owoseni, O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat. Res. Commun., 2023, 37, 100778. doi: 10.1016/j.ctarc.2023.100778 PMID: 37992539
  15. Cifuentes-Rius, A.; Butler, L.M.; Voelcker, N.H. Precision nanomedicines for prostate cancer. Nanomedicine , 2018, 13(8), 803-807. doi: 10.2217/nnm-2018-0034 PMID: 29485327
  16. Cohen, L.; Livney, Y.D.; Assaraf, Y.G. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist. Updat., 2021, 56, 100762. doi: 10.1016/j.drup.2021.100762 PMID: 33857756
  17. Sun, W.; Deng, Y.; Zhao, M.; Jiang, Y.; Gou, J.; Wang, Y.; Yin, T.; Zhang, Y.; He, H.; Tang, X. Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies. J. Control. Release, 2021, 333, 41-64. doi: 10.1016/j.jconrel.2021.01.010 PMID: 33450321
  18. Shahrukh, S.; Jain, N.; Shah, S.; Famta, P.; Srinivasarao, D.A.; Khatri, D.K.; Asthana, A.; Singh, S.B.; Raghuvanshi, R.S.; Srivastava, S. Aptamer guided nanomedicine strategies in prostate cancer: Targeting and diagnosis. J. Drug Deliv. Sci. Technol., 2023, 85, 104593. doi: 10.1016/j.jddst.2023.104593
  19. Choksi, A.U.; Khan, A.I.; Lokeshwar, S.D.; Segal, D.; Weiss, R.M.; Martin, D.T. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy. Am. J. Clin. Exp. Urol., 2022, 10(3), 142-153. PMID: 35874285
  20. Sasikumar, A.; Kamalasanan, K. Nanomedicine for prostate cancer using nanoemulsion: A review. J. Control. Release, 2017, 260, 111-123. doi: 10.1016/j.jconrel.2017.06.001 PMID: 28583444
  21. Ashrafizadeh, M.; Aghamiri, S.; Tan, S.C.; Zarrabi, A.; Sharifi, E.; Rabiee, N.; Kadumudi, F.B.; Pirouz, A.D.; Delfi, M.; Byrappa, K.; Thakur, V.K.; Sharath K, K.S.; Girish, Y.R.; Zandsalimi, F.; Zare, E.N.; Orive, G.; Tay, F.; Hushmandi, K.; Kumar, A.P.; Karaman, C.; Karimi-Maleh, H.; Mostafavi, E.; Makvandi, P.; Wang, Y. Nanotechnological approaches in prostate cancer therapy: Integration of engineering and biology. Nano Today, 2022, 45, 101532. doi: 10.1016/j.nantod.2022.101532
  22. Vicente-Ruiz, S.; Serrano-Martí, A.; Armiñán, A.; Vicent, M.J. Nanomedicine for the treatment of advanced prostate cancer. Adv. Ther., 2021, 4(1), 2000136. doi: 10.1002/adtp.202000136
  23. Hema, S.; Thambiraj, S.; Shankaran, D.R. Nanoformulations for targeted drug delivery to prostate cancer: An overview. J. Nanosci. Nanotechnol., 2018, 18(8), 5171-5191. doi: 10.1166/jnn.2018.15420 PMID: 29458568
  24. Khanam, A.; Singh, G.; Narwal, S.; Chopra, B.; Dhingra, A.K. A review on novel applications of nanotechnology in the management of prostate cancer. Curr. Drug Deliv., 2024, 21(9), 1161-1179. doi: 10.2174/0115672018180695230925113521 PMID: 37888818
  25. Cherian, A.M.; Nair, S.V.; Lakshmanan, V.K. The role of nanotechnology in prostate cancer theranostic applications. J. Nanosci. Nanotechnol., 2014, 14(1), 841-852. doi: 10.1166/jnn.2014.9052 PMID: 24730302
  26. Pranav; Laskar, P.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J. Adv. Res., 2023, 51, 197-217. doi: 10.1016/j.jare.2022.11.001 PMID: 36368516
  27. Panda, P.K.; Saraf, S.; Tiwari, A.; Verma, A.; Raikwar, S.; Jain, A.; Jain, S.K. Novel strategies for targeting prostate cancer. Curr. Drug Deliv., 2019, 16(8), 712-727. doi: 10.2174/1567201816666190821143805 PMID: 31433757
  28. He, L.; Liu, J.; Li, S.; Feng, X.; Wang, C.; Zhuang, X.; Ding, J.; Chen, X. Polymer nanoplatforms at work in prostate cancer therapy. Adv. Ther. , 2019, 2(4), 1800122. doi: 10.1002/adtp.201800122
  29. Aaron, L.; Franco, O.E.; Hayward, S.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia. Urol. Clin. North Am., 2016, 43(3), 279-288. doi: 10.1016/j.ucl.2016.04.012 PMID: 27476121
  30. Cunha, G.R.; Vezina, C.M.; Isaacson, D.; Ricke, W.A.; Timms, B.G.; Cao, M.; Franco, O.; Baskin, L.S. Development of the human prostate. Differentiation, 2018, 103, 24-45. doi: 10.1016/j.diff.2018.08.005 PMID: 30224091
  31. Sharma, M.; Gupta, S.; Dhole, B.; Kumar, A. The prostate gland. In: Basics of Human Andrology: A Textbook; Springer, 2017; pp. 17-35. doi: 10.1007/978-981-10-3695-8_2
  32. Verze, P.; Cai, T.; Lorenzetti, S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol., 2016, 13(7), 379-386. doi: 10.1038/nrurol.2016.89 PMID: 27245504
  33. Amin, M.; Khalid, A.; Tazeen, N.; Yasoob, M. Zonal anatomy of prostate. Ann King Edward Med Univ, 2010, 16(3), 138.
  34. Ali, A.; Du Feu, A.; Oliveira, P.; Choudhury, A.; Bristow, R.G.; Baena, E. Prostate zones and cancer: Lost in transition? Nat. Rev. Urol., 2022, 19(2), 101-115. doi: 10.1038/s41585-021-00524-7 PMID: 34667303
  35. Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and biology of prostate cancer. Genes Dev., 2018, 32(17-18), 1105-1140. doi: 10.1101/gad.315739.118 PMID: 30181359
  36. Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; Morgan, T.M.; Carlsson, S.V. 2022 update on prostate cancer epidemiology and risk factors—A systematic review. Eur. Urol., 2023, 84(2), 191-206. doi: 10.1016/j.eururo.2023.04.021 PMID: 37202314
  37. Zhang, Y.; Zhou, C.K.; Rencsok, E.M.; Fall, K.; Lotan, T.L.; Loda, M.; Giunchi, F.; Platz, E.A.; De Marzo, A.M.; Mucci, L.A.; Fiorentino, M.; Ebot, E.M. A prospective study of intraprostatic inflammation, focal atrophy, and progression to lethal prostate cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(12), 2047-2054. doi: 10.1158/1055-9965.EPI-19-0713 PMID: 31533941
  38. Trabzonlu, L.; Kulac, I.; Zheng, Q.; Hicks, J.L.; Haffner, M.C.; Nelson, W.G.; Sfanos, K.S.; Ertunc, O.; Lotan, T.L.; Heaphy, C.M.; Meeker, A.K.; Yegnasubramanian, S.; De Marzo, A.M. Molecular pathology of high-grade prostatic intraepithelial neoplasia: Challenges and opportunities. Cold Spring Harb. Perspect. Med., 2019, 9(4), a030403. doi: 10.1101/cshperspect.a030403 PMID: 30082453
  39. Brandão, A.; Paulo, P.; Teixeira, M.R. Hereditary predisposition to prostate cancer: From genetics to clinical implications. Int. J. Mol. Sci., 2020, 21(14), 5036. doi: 10.3390/ijms21145036 PMID: 32708810
  40. Beebe-Dimmer, J.L.; Kapron, A.L.; Fraser, A.M.; Smith, K.R.; Cooney, K.A. Risk of prostate cancer associated with familial and hereditary cancer syndromes. J. Clin. Oncol., 2020, 38(16), 1807-1813. doi: 10.1200/JCO.19.02808 PMID: 32208047
  41. Gandhi, J.; Afridi, A.; Vatsia, S.; Joshi, G.; Joshi, G.; Kaplan, S.A.; Smith, N.L.; Khan, S.A. The molecular biology of prostate cancer: Current understanding and clinical implications. Prostate Cancer Prostatic Dis., 2018, 21(1), 22-36. doi: 10.1038/s41391-017-0023-8 PMID: 29282359
  42. Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary factors and prostate cancer development, progression, and reduction. Nutrients, 2021, 13(2), 496. doi: 10.3390/nu13020496 PMID: 33546190
  43. Matsushita, M.; Fujita, K.; Nonomura, N. Influence of diet and nutrition on prostate cancer. Int. J. Mol. Sci., 2020, 21(4), 1447. doi: 10.3390/ijms21041447 PMID: 32093338
  44. Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci., 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
  45. Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89. doi: 10.14740/wjon1191 PMID: 31068988
  46. Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med., 2018, 8(12), a030361. doi: 10.1101/cshperspect.a030361 PMID: 29311132
  47. Škara, L.; Huđek T, A.; Pezelj, I.; Vrtarić, A.; Sinčić, N.; Krušlin, B.; Ulamec, M. Prostate cancer—Focus on cholesterol. Cancers , 2021, 13(18), 4696. doi: 10.3390/cancers13184696 PMID: 34572923
  48. Rotshild, V.; Rabkin, N.; Matok, I. The risk for prostate cancer with calcium channel blockers: A systematic review, meta-analysis, and meta-regression. Ann. Pharmacother., 2023, 57(1), 16-28. doi: 10.1177/10600280221098121 PMID: 35645169
  49. Hirshburg, J.M.; Kelsey, P.A.; Therrien, C.A.; Gavino, A.C.; Reichenberg, J.S. Adverse effects and safety of 5-alpha reductase inhibitors (finasteride, dutasteride): A systematic review. J. Clin. Aesthet. Dermatol., 2016, 9(7), 56-62. PMID: 27672412
  50. Allott, E.H.; Masko, E.M.; Freedland, S.J. Obesity and prostate cancer: Weighing the evidence. Eur. Urol., 2013, 63(5), 800-809. doi: 10.1016/j.eururo.2012.11.013 PMID: 23219374
  51. Maekawa, S.; Takata, R.; Obara, W. Molecular mechanisms of prostate cancer development in the precision medicine era: A comprehensive review. Cancers , 2024, 16(3), 523. doi: 10.3390/cancers16030523 PMID: 38339274
  52. Porkka, K.P.; Visakorpi, T. Molecular mechanisms of prostate cancer. Eur. Urol., 2004, 45(6), 683-691. doi: 10.1016/j.eururo.2004.01.012 PMID: 15149739
  53. De Marzo, A.M.; DeWeese, T.L.; Platz, E.A.; Meeker, A.K.; Nakayama, M.; Epstein, J.I.; Isaacs, W.B.; Nelson, W.G. Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment. J. Cell. Biochem., 2004, 91(3), 459-477. doi: 10.1002/jcb.10747 PMID: 14755677
  54. Packer, J.R.; Maitland, N.J. The molecular and cellular origin of human prostate cancer. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(6)(6 Pt A), 1238-1260. doi: 10.1016/j.bbamcr.2016.02.016 PMID: 26921821
  55. Shtivelman, E.; Beer, T.M.; Evans, C.P. Molecular pathways and targets in prostate cancer. Oncotarget, 2014, 5(17), 7217-7259. doi: 10.18632/oncotarget.2406 PMID: 25277175
  56. Testa, U.; Castelli, G.; Pelosi, E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines , 2019, 6(3), 82. doi: 10.3390/medicines6030082 PMID: 31366128
  57. Fay, E.K.; Graff, J.N. Immunotherapy in prostate cancer. Cancers , 2020, 12(7), 1752. doi: 10.3390/cancers12071752 PMID: 32630247
  58. Chen, F.; Zhao, X. Prostate cancer: Current treatment and prevention strategies. Iran. Red Crescent Med. J., 2013, 15(4), 279-284. doi: 10.5812/ircmj.6499 PMID: 24082997
  59. Weiner, A.B.; Kundu, S.D. Prostate cancer. Med. Clin. North Am., 2018, 102(2), 215-229. doi: 10.1016/j.mcna.2017.10.001 PMID: 29406054
  60. Aragon-Ching, J.B.; Nader, R.; El Amm, J. Role of chemotherapy in prostate cancer. Asian J. Androl., 2018, 20(3), 221-229. doi: 10.4103/aja.aja_40_17 PMID: 29063869
  61. Canil, C.M.; Tannock, I.F. Is there a role for chemotherapy in prostate cancer? Br. J. Cancer, 2004, 91(6), 1005-1011. doi: 10.1038/sj.bjc.6601850 PMID: 15150548
  62. Walczak, J.R.; Carducci, M.A. Pharmacological treatments for prostate cancer. Expert Opin. Investig. Drugs, 2002, 11(12), 1737-1748. doi: 10.1517/13543784.11.12.1737 PMID: 12457434
  63. Silvestri, I.; Cattarino, S.; Giantulli, S.; Nazzari, C.; Collalti, G.; Sciarra, A. A perspective of immunotherapy for prostate cancer. Cancers , 2016, 8(7), 64. doi: 10.3390/cancers8070064 PMID: 27399780
  64. Nilsson, S.; Norlén, B.J.; Widmark, A. A systematic overview of radiation therapy effects in prostate cancer. Acta Oncol., 2004, 43(4), 316-381. doi: 10.1080/02841860410030661 PMID: 15303499
  65. Avramović, N.; Mandić, B.; Savić-Radojević, A.; Simić, T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics, 2020, 12(4), 298. doi: 10.3390/pharmaceutics12040298 PMID: 32218326
  66. Yousefi R, H.A.; Shin, D.H.; Yousefi R, S. Polymeric nanoparticles in cancer chemotherapy: A narrative review. Iran. J. Public Health, 2022, 51(2), 226-239. doi: 10.18502/ijph.v51i2.8677 PMID: 35866132
  67. Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer-Based drug delivery systems for cancer treatment. J. Polym. Sci. A Polym. Chem., 2016, 54(22), 3525-3550. doi: 10.1002/pola.28252
  68. Alsuraifi, A.; Curtis, A.; Lamprou, D.A.; Hoskins, C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics, 2018, 10(3), 136. doi: 10.3390/pharmaceutics10030136 PMID: 30131473
  69. Nagavarma, B.V.; Yadav, H.K.; Ayaz, A.V.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles-A review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
  70. Castro, K.C.; Costa, J.M.; Campos, M.G.N. Drug-loaded polymeric nanoparticles: A review. Int. J. Polym. Mater., 2022, 71(1), 1-13. doi: 10.1080/00914037.2020.1798436
  71. Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731. doi: 10.3390/molecules25163731 PMID: 32824172
  72. Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials , 2020, 10(10), 1970. doi: 10.3390/nano10101970 PMID: 33027891
  73. Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym., 2020, 148, 104501. doi: 10.1016/j.reactfunctpolym.2020.104501
  74. Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784. doi: 10.1016/j.msec.2017.06.004 PMID: 28866227
  75. Barani, M.; Sabir, F.; Rahdar, A.; Arshad, R.; Kyzas, G.Z. Nanotreatment and nanodiagnosis of prostate cancer: Recent updates. Nanomaterials, 2020, 10(9), 1696. doi: 10.3390/nano10091696 PMID: 32872181
  76. Essa, D.; Kondiah, P.P.D.; Kumar, P.; Choonara, Y.E. Design of chitosan-coated, quercetin-loaded PLGA nanoparticles for enhanced PSMA-specific activity on LnCap prostate cancer cells. Biomedicines, 2023, 11(4), 1201. doi: 10.3390/biomedicines11041201 PMID: 37189819
  77. Adekiya, T.A.; Moore, M.; Thomas, M.; Lake, G.; Hudson, T.; Adesina, S.K. Preparation, optimization, and in-vitro evaluation of brusatol- and docetaxel-loaded nanoparticles for the treatment of prostate cancer. Pharmaceutics, 2024, 16(1), 114. doi: 10.3390/pharmaceutics16010114 PMID: 38258124
  78. Anwer, M.K.; Ali, E.A.; Iqbal, M.; Ahmed, M.M.; Aldawsari, M.F.; Saqr, A.A.; Alalaiwe, A.; Soliman, G.A. Development of chitosan-coated PLGA-based nanoparticles for improved oral olaparib delivery: In vitro characterization, and in vivo pharmacokinetic studies. Processes , 2022, 10(7), 1329. doi: 10.3390/pr10071329
  79. Li, Z.; Huang, J.; Du, T.; Lai, Y.; Li, K.; Luo, M.L.; Zhu, D.; Wu, J.; Huang, H. Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766. Chin. Chem. Lett., 2022, 33(5), 2496-2500. doi: 10.1016/j.cclet.2021.11.078
  80. Goswami, A.; Patel, N.; Bhatt, V.; Raval, M.; Kundariya, M.; Sheth, N. Lycopene loaded polymeric nanoparticles for prostate cancer treatment: Formulation, optimization using Box-behnken design and cytotoxicity studies. J. Drug Deliv. Sci. Technol., 2022, 67, 102930. doi: 10.1016/j.jddst.2021.102930
  81. Fang, Y.; Lin, S.; Yang, F.; Situ, J.; Lin, S.; Luo, Y. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer. BioMed Res. Int., 2020, 2020, 1-12. doi: 10.1155/2020/9186583 PMID: 32420382
  82. Raspantini, G.L.; Luiz, M.T.; Abriata, J.P.; Eloy, J.O.; Vaidergorn, M.M.; Emery, F.S.; Marchetti, J.M. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127144. doi: 10.1016/j.colsurfa.2021.127144
  83. Tao, Y.; Dai, C.; Xie, Z.; You, X.; Li, K.; Wu, J.; Huang, H. Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chin. Chem. Lett., 2024, 35(8), 109170. doi: 10.1016/j.cclet.2023.109170
  84. Conte, R.; Valentino, A.; Di Cristo, F.; Peluso, G.; Cerruti, P.; Di Salle, A.; Calarco, A. Cationic polymer nanoparticles-mediated delivery of miR-124 impairs tumorigenicity of prostate cancer cells. Int. J. Mol. Sci., 2020, 21(3), 869. doi: 10.3390/ijms21030869 PMID: 32013257
  85. Ribeiro, A.F.; Santos, J.F.; Mattos, R.R.; Barros, E.G.O.; Nasciutti, L.E.; Cabral, L.M.; Sousa, V.P.D. Characterization and in vitro antitumor activity of polymeric nanoparticles loaded with Uncaria tomentosa extract. An. Acad. Bras. Cienc., 2020, 92(1), e20190336. doi: 10.1590/0001-3765202020190336 PMID: 32321026
  86. Murar, M.; Pujals, S.; Albertazzi, L. Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting. Nanoscale Adv., 2023, 5(5), 1378-1385. doi: 10.1039/D2NA00601D PMID: 36866255
  87. Jin, G.W.; Rejinold, N.S.; Choy, J.H. Multifunctional polymeric micelles for cancer therapy. Polymers , 2022, 14(22), 4839. doi: 10.3390/polym14224839 PMID: 36432965
  88. Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release, 2021, 332, 127-147. doi: 10.1016/j.jconrel.2021.02.016 PMID: 33609621
  89. Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci., 2009, 34(9), 893-910. doi: 10.1016/j.progpolymsci.2009.05.002
  90. Aliabadi, A.; Hasannia, M.; Vakili-Azghandi, M.; Araste, F.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: Application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(39), 9325-9368. doi: 10.1039/D3TB01371E PMID: 37706425
  91. Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336. doi: 10.1016/j.jconrel.2021.02.031 PMID: 33652113
  92. Long, M.; Liu, X.; Huang, X.; Lu, M.; Wu, X.; Weng, L.; Chen, Q.; Wang, X.; Zhu, L.; Chen, Z. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J. Control. Release, 2021, 334, 303-317. doi: 10.1016/j.jconrel.2021.04.035 PMID: 33933517
  93. Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater., 2020, 113, 501-511. doi: 10.1016/j.actbio.2020.06.019 PMID: 32562805
  94. Alhakamy, N.A.; Ahmed, O.A.A.; Fahmy, U.A.; Md, S. Development and in vitro evaluation of 2-methoxyestradiol loaded polymeric micelles for enhancing anticancer activities in prostate cancer. Polymers , 2021, 13(6), 884. doi: 10.3390/polym13060884 PMID: 33805675
  95. Zhang, H.; Liu, X.; Wu, F.; Qin, F.; Feng, P.; Xu, T.; Li, X.; Yang, L. A novel prostate-specific membrane-antigen (PSMA) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway. Int. J. Mol. Sci., 2016, 17(5), 676. doi: 10.3390/ijms17050676 PMID: 27196894
  96. Gao, Y.; Li, Y.; Li, Y.; Yuan, L.; Zhou, Y.; Li, J.; Zhao, L.; Zhang, C.; Li, X.; Liu, Y. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale, 2015, 7(2), 597-612. doi: 10.1039/C4NR05738D PMID: 25419788
  97. Nezir, A.E.; Bolat, Z.B.; Ozturk, N.; Kocak, P.; Zemheri, E.; Gulyuz, S.; Ozkose, U.U.; Yilmaz, O.; Vural, I.; Bozkır, A.; Sahin, F.; Telci, D. Targeting prostate cancer with docetaxel-loaded peptide 563-conjugated PEtOx-co-PEI30%-b-PCL polymeric micelle nanocarriers. Amino Acids, 2023, 55(8), 1023-1037. doi: 10.1007/s00726-023-03292-3 PMID: 37318626
  98. Yang, R.; Chen, H.; Guo, D.; Dong, Y.; Miller, D.D.; Li, W.; Mahato, R.I. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer. J. Pharmacol. Exp. Ther., 2019, 370(3), 864-875. doi: 10.1124/jpet.119.256628 PMID: 30996033
  99. Xu, W.; Siddiqui, I.A.; Nihal, M.; Pilla, S.; Rosenthal, K.; Mukhtar, H.; Gong, S. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials, 2013, 34(21), 5244-5253. doi: 10.1016/j.biomaterials.2013.03.006 PMID: 23582862
  100. Gao, Y.; Zhou, Y.; Zhao, L.; Zhang, C.; Li, Y.; Li, J.; Li, X.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater., 2015, 23, 127-135. doi: 10.1016/j.actbio.2015.05.021 PMID: 26013038
  101. Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Igne Ferreira, E.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm., 2020, 573, 118814. doi: 10.1016/j.ijpharm.2019.118814 PMID: 31759101
  102. Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307. doi: 10.1016/j.progpolymsci.2013.07.005
  103. Sun, H.J.; Zhang, S.; Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev., 2015, 44(12), 3900-3923. doi: 10.1039/C4CS00249K PMID: 25325787
  104. Aljamal, K.; Ramaswamy, C.; Florence, A. Supramolecular structures from dendrons and dendrimers. Adv. Drug Deliv. Rev., 2005, 57(15), 2238-2270. doi: 10.1016/j.addr.2005.09.015 PMID: 16310885
  105. Lyu, Z.; Ding, L.; Huang, A.Y.T.; Kao, C.L.; Peng, L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem., 2019, 13, 34-48. doi: 10.1016/j.mtchem.2019.04.004
  106. Mandal, A.K. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int. J. Polym. Mater., 2021, 70(4), 287-297. doi: 10.1080/00914037.2020.1713780
  107. Yellepeddi, V.K.; Ghandehari, H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin. Drug Deliv., 2019, 16(10), 1051-1061. doi: 10.1080/17425247.2019.1656607 PMID: 31414922
  108. Ghaffari, M.; Dehghan, G.; Abedi-Gaballu, F.; Kashanian, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Losic, D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur. J. Pharm. Sci., 2018, 122, 311-330. doi: 10.1016/j.ejps.2018.07.020 PMID: 30003954
  109. Li, X.; Naeem, A.; Xiao, S.; Hu, L.; Zhang, J.; Zheng, Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics, 2022, 14(6), 1292. doi: 10.3390/pharmaceutics14061292 PMID: 35745863
  110. Szota, M.; Reczyńska-Kolman, K.; Pamuła, E.; Michel, O.; Kulbacka, J.; Jachimska, B. Poly (Amidoamine) dendrimers as nanocarriers for 5-fluorouracil: effectiveness of complex formation and cytotoxicity studies. Int. J. Mol. Sci., 2021, 22(20), 11167. doi: 10.3390/ijms222011167 PMID: 34681827
  111. Seixas, N.; Ravanello, B.B.; Morgan, I.; Kaluđerović, G.N.; Wessjohann, L.A. Chlorambucil conjugated Ugi dendrimers with PAMAM-NH2 core and evaluation of their anticancer activity. Pharmaceutics, 2019, 11(2), 59. doi: 10.3390/pharmaceutics11020059 PMID: 30717083
  112. Lesniak, W.; Boinapally, S.; Lofland, G.; Jiang, Z.; Foss, C.; Behman Azad, B.; Jablonska, A.; Garcia, M.; Brzezinski, M.; Pomper, M. Multimodal, PSMA-targeted, PAMAM dendrimer-drug conjugates for treatment of prostate cancer: Preclinical evaluation. Int. J. Nanomedicine, 2024, 19, 4995-5010. doi: 10.2147/IJN.S454128 PMID: 38832336
  113. Dong, Y.; Chen, Y.; Zhu, D.; Shi, K.; Ma, C.; Zhang, W.; Rocchi, P.; Jiang, L.; Liu, X. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J. Control. Release, 2020, 322, 416-425. doi: 10.1016/j.jconrel.2020.04.003 PMID: 32247806
  114. Dhull, A.; Wei, J.; Pulukuri, A.J.; Rani, A.; Sharma, R.; Mesbahi, N.; Yoon, H.; Savoy, E.A.; Xaivong Vi, S.; Goody, K.J.; Berkman, C.E.; Wu, B.J.; Sharma, A. PSMA-targeted dendrimer as an efficient anticancer drug delivery vehicle for prostate cancer. Nanoscale, 2024, 16(11), 5634-5652. doi: 10.1039/D3NR06520K PMID: 38440933
  115. Rani, A.; Pulukuri, A.J.; Wei, J.; Dhull, A.; Dar, A.I.; Sharma, R.; Mesbahi, N.; Savoy, E.A.; Yoon, H.; Wu, B.J.; Berkman, C.E.; Sharma, A. PSMA-targeted 2-deoxyglucose-based dendrimer nanomedicine for the treatment of prostate cancer. Biomacromolecules, 2024, 25(9), 6164-6180. doi: 10.1021/acs.biomac.4c00878 PMID: 39164913
  116. Tai, Z.; Ma, J.; Ding, J.; Pan, H.; Chai, R.; Zhu, C.; Cui, Z.; Chen, Z.; Zhu, Q. Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer. Int. J. Nanomedicine, 2020, 15, 10305-10320. doi: 10.2147/IJN.S282107 PMID: 33376323
  117. Teyhoo, M.; Hosseini, F.; Ardestani, M.S.; Ghorbani, M. Synthesis and evaluation of a novel nanosized anionic linear globular dendrimer G2-ciprofloxacin conjugate against prostate cancer. Pak. J. Pharm. Sci., 2020, 33(6), 2589-2594. PMID: 33867334
  118. Almowalad, J.; Laskar, P.; Somani, S.; Meewan, J.; Tate, R.J.; Dufès, C. Lactoferrin- and dendrimer-bearing gold nanocages for stimulus-free DNA delivery to prostate cancer cells. Int. J. Nanomedicine, 2022, 17, 1409-1421. doi: 10.2147/IJN.S347574 PMID: 35369035
  119. Chandran, S.S.; Ray, S.; Pomper, M.G.; Denmeade, S.R.; Mease, R.C. Prostate specific membrane antigen (PSMA) targeted nanoparticles for therapy of prostate cancer. US Patent US9422234B2,, 2016.
  120. Radovic-Moreno, A.F.; Zhang, F.; Langer, R.S.; Farokhzad, O.C. Polymer-encapsulated reverse micelles. US Patent US8193334B2,, 2012.
  121. Gao, J.; Boothman, D.; Zhou, Y.; Bey, E. pH-sensitive compositions for delivery of beta lapachone and methods of use. US Patent US9631041B2,, 2017.
  122. Perumal, O.P.; Podaralla, S.K.; Averineni, R.K. Polymer conjugated protein micelles. US Patent US8697098B2,, 2014.
  123. Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
  124. Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18(6), 146. doi: 10.1007/s11051-016-3423-0
  125. Behl, A.; Parmar, V.S.; Malhotra, S.; Chhillar, A.K. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer, 2020, 207, 122901. doi: 10.1016/j.polymer.2020.122901
  126. Hou, A.; Du, Y.; Su, Y.; Pang, Z.; liu, S.; Xian, S.; Zhao, X.; Ma, L.; Liu, B.; Wu, H.; Zhou, Z. CuS/Co-Ferrocene-MOF nanocomposites for photothermally enhanced chemodynamic antibacterial therapy. ACS Appl. Nano Mater., 2024, 7(9), 10998-11007. doi: 10.1021/acsanm.4c02067
  127. Hu, T.; Xue, B.; Meng, F.; Ma, L.; Du, Y.; Yu, S.; Ye, R.; Li, H.; Zhang, Q.; Gu, L.; Zhou, Z.; Liang, R.; Tan, C. Preparation of 2D polyaniline/MoO3− x superlattice nanosheets via intercalation‐induced morphological transformation for efficient chemodynamic therapy. Adv. Healthc. Mater., 2023, 12(11), 2202911. doi: 10.1002/adhm.202202911 PMID: 36603589
  128. Li, M.; Zhang, Z.; Yu, Y.; Yuan, H.; Nezamzadeh-Ejhieh, A.; Liu, J.; Pan, Y.; Lan, Q. Recent advances in Zn-MOFs and their derivatives for cancer therapeutic applications. Materials Advances, 2023, 4(21), 5050-5093. doi: 10.1039/D3MA00545C

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers