Anticancer Properties of Phenylboronic Acid in Androgen-Dependent (LNCaP) and Androgen-Independent (PC3) Prostate Cancer Cells via MAP Kinases by 2D and 3D Culture Methods
- Authors: Gurgen D.1, Gunes A.1, Kose O.2, Ahsen Kaplan A.3, Karabulut S.1, Tunalı M.4, Keskin İ.1
-
Affiliations:
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University
- Department of Histology and Embryology, Faculty of Medicine,, Istanbul Medipol University, Istanbul
- Department of Veterinary Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University- Cerrahpaşa
- Issue: Vol 25, No 13 (2025)
- Pages: 899-912
- Section: Chemistry
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694432
- DOI: https://doi.org/10.2174/0118715206352302241227031015
- ID: 694432
Cite item
Full Text
Abstract
Objective:This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)’s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.
Methods:The IC50 values of PBA and colchicine were determined through viability assays in 2D and 3D models. Colony formation, proliferation, and migration assays were conducted. Immunofluorescence intensity analysis of MAPKKK proteins (ERK, JNK, p38) was performed to explore the mechanism of cellular response to PBA.
Results:The IC50 values were determined for each treatment group. After 48-hour of PBA treatment, migration was inhibited more effectively than with colchicine in both cancer cell lines. After 24-hour, PBA reduced colony formation and proliferation. PBA treatment for 24-hour decreased JNK expression in PC3 and LNCaP cells in 2D models. Both PBA and colchicine increased p38 expression in PC3 spheroids. PBA’s effects on cell deformation were visualized in semi-thin sections, marking the first ultrastructural observation of PBA-induced morphological defects in cancer cells.
Conclusion:PBA exerts antimitotic effects by inhibiting proliferation and migration and triggers diverse metabolic responses across different cell lines. Furthermore the low toxicity of PBA’s low toxicity on RWPE-1 cells suggests its potential as a promising chemotherapeutic agent for future studies.
Keywords
About the authors
Duygu Gurgen
Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University
Email: info@benthamscience.net
Arzu Gunes
Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University
Email: info@benthamscience.net
Oguzhan Kose
Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University
Email: info@benthamscience.net
Arife Ahsen Kaplan
Department of Histology and Embryology, Faculty of Medicine,, Istanbul Medipol University, Istanbul
Email: info@benthamscience.net
Seda Karabulut
Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University
Email: info@benthamscience.net
M. Tunalı
Department of Veterinary Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University- Cerrahpaşa
Email: info@benthamscience.net
İlknur Keskin
Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin., 2024, 74(1), 12-49. doi: 10.3322/caac.21820 PMID: 38230766
- Harris, A.E.; Metzler, V.M.; Roy, L.J.; Varun, D.; Woodcock, C.L.; Haigh, D.B.; Endeley, C.; Haque, M.; Toss, M.S.; Alsaleem, M.; Persson, J.L.; Gudas, L.J.; Rakha, E.; Robinson, B.D.; Khani, F.; Martin, L.M.; Moyer, J.E.; Brownlie, J.; Madhusudan, S.; Allegrucci, C.; James, V.H.; Rutland, C.S.; Fray, R.G.; Ntekim, A.; Brot, d.S.; Mongan, N.P.; Jeyapalan, J.N. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front. Endocrinol., 2022, 13, 1006101. doi: 10.3389/fendo.2022.1006101 PMID: 36263323
- Ferraldeschi, R.; Welti, J.; Luo, J.; Attard, G.; Bono, d.J.S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: Progresses and prospects. Oncogene, 2015, 34(14), 1745-1757. doi: 10.1038/onc.2014.115 PMID: 24837363
- Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238. doi: 10.1016/j.pharmthera.2013.07.003 PMID: 23859952
- Palmberg, C.; Koivisto, P.; Visakorpi, T.; Tammela, T.L.J. PSA decline is an independent prognostic marker in hormonally treated prostate cancer. Eur. Urol., 1999, 36(3), 191-196. doi: 10.1159/000067996 PMID: 10450001
- Saraon, P.; Drabovich, A.P.; Jarvi, K.A.; Diamandis, E.P. Mechanisms of androgen-independent prostate cancer. EJIFCC, 2014, 25(1), 42-54. PMID: 27683456
- Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380. doi: 10.3978/J.ISSN.2223-4683.2015.05.02 PMID: 26814148
- Türk, C.; Neisius, A.; Petrik, A. EAU guidelines on interventional treatment for urolithiasis. Europ. Urol., 2016, 69(3), 475-482.
- Ramjan, A; Hossain, M; Runa, JF; Md, H; Mahmodul, I. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds. Avicenna. J. Phytomed., 2014, 4(6), 430-436. PMID: 25386407
- George, K.; Thomas, N.S.; Malathi, R. Modulatory effect of selected dietary phytochemicals on delayed rectifier K+ current in human prostate cancer cells. J. Membr. Biol., 2019, 252(2-3), 195-206. doi: 10.1007/s00232-019-00070-9 PMID: 31165179
- Page, L.C.; Koumakpayi, I.H.; Fahmy, A.M.; Masson, M.A-M.; Saad, F. Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients. Br. J. Cancer, 2006, 94(12), 1906-1912. doi: 10.1038/sj.bjc.6603184 PMID: 16721361
- Berish, R.B.; Ali, A.N.; Telmer, P.G.; Ronald, J.A.; Leong, H.S. Translational models of prostate cancer bone metastasis. Nat. Rev. Urol., 2018, 15, 403-421. doi: 10.1038/s41585-018-0020-2
- Wang, Y.; Xia, Y.; Lu, Z. Metabolic features of cancer cells. Cancer Commun., 2018, 38(1), 1-6. doi: 10.1186/s40880-018-0335-7 PMID: 30376896
- Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem., 2003, 51(12), 3541-3545. doi: 10.1021/jf034114g PMID: 12769521
- Li, X.; Wang, X.; Zhang, J.; Hanagata, N.; Wang, X.; Weng, Q.; Ito, A.; Bando, Y.; Golberg, D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat. Commun., 2017, 8(1), 13936. doi: 10.1038/ncomms13936 PMID: 28059072
- Marasovic, M.; Ivankovic, S.; Stojkovic, R.; Djermic, D.; Galic, B.; Milos, M. In vitro and in vivo antitumour effects of phenylboronic acid against mouse mammary adenocarcinoma 4T1 and squamous carcinoma SCCVII cells. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1299-1304. doi: 10.1080/14756366.2017.1384823 PMID: 29072095
- Williams, G.M.T.; Chapin, R.E.; King, P.E.; Moser, G.J.; Goldsworthy, T.L.; Morrison, J.P.; Maronpot, R.R. Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice. Toxicol. Pathol., 2004, 32(1), 73-78. doi: 10.1080/01926230490260899 PMID: 14713551
- Barranco, W.T.; Hudak, P.F.; Eckhert, C.D. Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States). Canc. Caus. Cont., 2007, 18(1), 71-77. doi: 10.1007/s10552-006-0077-8 PMID: 17186423
- McAuley, E.M.; Bradke, T.A.; Plopper, G.E. Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration. Cell Adhes. Migr., 2011, 5(5), 382-386. doi: 10.4161/cam.5.5.18162 PMID: 21975546
- Psurski, M.; Słowik, Ł.A.; Woźniak, A.A.; Wietrzyk, J.; Sporzyński, A. Discovering simple phenylboronic acid and benzoxaborole derivatives for experimental oncology – phase cycle-specific inducers of apoptosis in A2780 ovarian cancer cells. Invest. New Drugs, 2019, 37(1), 35-46. doi: 10.1007/s10637-018-0611-z PMID: 29779163
- Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124. doi: 10.1016/j.ejmech.2014.09.051 PMID: 25240869
- Qin, M.; Peng, S.; Liu, N.; Hu, M.; He, Y.; Li, G.; Chen, H.; He, Y.; Chen, A.; Wang, X.; Liu, M.; Chen, Y.; Yi, Z. LG308, a novel synthetic compound with antimicrotubule activity in prostate cancer cells, exerts effective antitumor activity. J. Pharmacol. Exp. Ther., 2015, 355(3), 473-483. doi: 10.1124/jpet.115.225912 PMID: 26377911
- Mukhtar, E.; Adhami, V.M.; Sechi, M.; Mukhtar, H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett., 2015, 367(2), 173-183. doi: 10.1016/j.canlet.2015.07.030 PMID: 26235140
- Bates, D.; Eastman, A. Microtubule destabilising agents: Far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol., 2017, 83(2), 255-268. doi: 10.1111/bcp.13126 PMID: 27620987
- Stone, A.A.; Chambers, T.C. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp. Cell Res., 2000, 254(1), 110-119. doi: 10.1006/excr.1999.4731 PMID: 10623471
- Shtil, A.A.; Mandlekar, S.; Yu, R. Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene, 1999, 18(2), 377-384. doi: 10.1038/sj.onc.1202305
- Barranco, W.T.; Eckhert, C.D. Cellular changes in boric acid-treated DU-145 prostate cancer cells. Br. J. Cancer, 2006, 94(6), 884-890. doi: 10.1038/sj.bjc.6603009 PMID: 16495920
- Oh, J.; An, H.J.; Yeo, H.J.; Choi, S.; Oh, J.; Kim, S.; Kim, J.M.; Choi, J.; Lee, S. Colchicine as a novel drug for the treatment of osteosarcoma through drug repositioning based on an FDA drug library. Front. Oncol., 2022, 12, 893951. doi: 10.3389/fonc.2022.893951 PMID: 36059694
- Kurek, J; Myszkowski, K; Kozaryn, O.I Cytotoxic, analgesic and anti-inflammatory activity of colchicine and its C-10 sulfur containing derivatives. Sci. Rep., 2021, 11(1), 1-12. doi: 10.1038/s41598-021-88260-1
- Bradke, T.M.; Hall, C.; Carper, S.W.; Plopper, G.E. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adhes. Migr., 2008, 2(3), 153-160. doi: 10.4161/cam.2.3.6484 PMID: 19262119
- Rolfo, A.; Giuffrida, D.; Giuffrida, M.C.; Todros, T.; Calogero, A.E. New perspectives for prostate cancer treatment: In vitro inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media. Aging Male, 2014, 17(2), 94-101. doi: 10.3109/13685538.2014.896894 PMID: 24597941
- Gannon, P.O.; Ethier, G.J.; Hassler, M.; Delvoye, N.; Aversa, M.; Poisson, A.O.; Péant, B.; Fahmy, A.M.; Saad, F.; Lapointe, R.; Masson, M.A.M. Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer. PLoS One, 2010, 5(8), e12107. doi: 10.1371/journal.pone.0012107 PMID: 20711410
- Shen, R.; Sumitomo, M.; Dai, J.; Harris, A.; Kaminetzky, D.; Gao, M.; Burnstein, K.L.; Nanus, D.M. Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology, 2000, 141(5), 1699-1704. doi: 10.1210/endo.141.5.7463 PMID: 10803579
- Laurenzana, A.; Balliu, M.; Cellai, C.; Romanelli, M.N.; Paoletti, F. Effectiveness of the histone deacetylase inhibitor (S)-2 against LNCaP and PC3 human prostate cancer cells. PLoS One, 2013, 8(3), e58267. doi: 10.1371/journal.pone.0058267 PMID: 23469273
- Sintich, S.M.; Steinberg, J.; Kozlowski, J.M. Cytotoxic sensitivity to tumor necrosis factor-in PC3 and LNCaP prostatic cancer cells is regulated by extracellular levels of SGP-2. Clusterin, 1999, 39(2), 87-93.
- Bello, D.; Webber, M.M.; Kleinman, H.K.; Wartinger, D.D.; Rhim, J.S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis, 1997, 18(6), 1215-1223. doi: 10.1093/carcin/18.6.1215 PMID: 9214605
- Webber, M.; Bello, D.; Kleinman, H.K.; Hoffman, M.P. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis, 1997, 18(6), 1225-1231. doi: 10.1093/carcin/18.6.1225 PMID: 9214606
- Achanzar, W.E.; Achanzar, K.B.; Lewis, J.G.; Webber, M.M.; Waalkes, M.P. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol. Appl. Pharmacol., 2000, 164(3), 291-300. doi: 10.1006/taap.1999.8907 PMID: 10799339
- Quader, S.T.A.; DeOcampo, B.D.; Williams, D.E.; Kleinman, H.K.; Webber, M.M. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2001, 496(1-2), 153-161. doi: 10.1016/S1383-5718(01)00230-3 PMID: 11551491
- Bulbul, M.; Karabulut, S.; Kalender, M.; Keskin, I. Effects of gallic acid on endometrial cancer cells in two and three dimensional cell culture models. Asian Pac. J. Cancer Prev., 2021, 22(6), 1745-1751. doi: 10.31557/APJCP.2021.22.6.1745 PMID: 34181329
- Martinotti, S.; Ranzato, E. Scratch wound healing assay. Methods Mol. Biol., 2019, 2109, 225-229. doi: 10.1007/7651_2019_259 PMID: 31414347
- Banerjee, A.; Biswas, R.; Lim, R.; Pasolli, H.A.; Raghavan, S. Scanning electron microscopy of murine skin ultrathin sections and cultured keratinocytes. STAR Protoc., 2021, 2(3), 100729. doi: 10.1016/j.xpro.2021.100729 PMID: 34458866
- Finkelstein, Y.; Aks, S.E.; Hutson, J.R.; Juurlink, D.N.; Nguyen, P.; Raz, D.G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol., 2010, 48(5), 407-414. doi: 10.3109/15563650.2010.495348 PMID: 20586571
- Liu, L.; Chen, M.; Gao, Y.; Tian, L.; Zhang, W.; Wang, Z. Mechanism of action and side effects of colchicine based on biomechanical properties of cells. J. Microsc., 2023, 291(3), 229-236. doi: 10.1111/jmi.13212 PMID: 37358710
- Carr, A.A. Colchicine toxicity. Arch. Intern. Med., 1965, 115(1), 29-33. doi: 10.1001/archinte.1965.03860130031005 PMID: 14219498
- Eleftheriou, G.; Bacis, G.; Fiocchi, R.; Sebastiano, R. Colchicine-induced toxicity in a heart transplant patient with chronic renal failure. Clin. Toxicol., 2008, 46(9), 827-830. doi: 10.1080/15563650701779703 PMID: 18608282
- Fisher, M.F.; Rao, S.S. Three‐dimensional culture models to study drug resistance in breast cancer. Biotechnol. Bioeng., 2020, 117(7), 2262-2278. doi: 10.1002/bit.27356 PMID: 32297971
- Kaushik, V.; Yakisich, J.S.; Way, L.F.; Azad, N.; Iyer, A.K.V. Chemoresistance of cancer floating cells is independent of their ability to form 3D structures: Implications for anticancer drug screening. J. Cell. Physiol., 2019, 234(4), 4445-4453. doi: 10.1002/jcp.27239 PMID: 30191978
- Veine, DM; Yao, H; Stafford, DR; Fay, KS; Livant, DL A D-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis., 2014, 31(4), 379-393. doi: 10.1007/s10585-013-9634-1
- Abel, S.D.A.; Dadhwal, S.; Gamble, A.B.; Baird, S.K. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ, 2018, 6(7), e5115. doi: 10.7717/peerj.5115 PMID: 30002964
- Schatten, H. Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv. Exp. Med. Biol., 2018, 1095, 1-14. doi: 10.1007/978-3-319-95693-0_1 PMID: 30229546
- Dehghani, M; Kianpour, S; Zangeneh, A; Pour, M.Z. CXCL12 modulates prostate cancer cell adhesion by altering the levels or activities of β1-containing integrins. Int. J. Cell Biol., 2014, 2014, 981750. doi: 10.1155/2014/981750
- Kennedy, N.J.; Davis, R.J. Role of JNK in tumor development. Cell Cycle, 2003, 2(3), 198-200. doi: 10.4161/cc.2.3.388 PMID: 12734425
- Weston, C.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Genet. Dev., 2002, 12(1), 14-21. doi: 10.1016/S0959-437X(01)00258-1 PMID: 11790549
- Eferl, R.; Ricci, R.; Kenner, L.; Zenz, R.; David, J.P.; Rath, M.; Wagner, E.F. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 2003, 112(2), 181-192. doi: 10.1016/S0092-8674(03)00042-4 PMID: 12553907
- Xu, R.; Hu, J. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed. Pharmacother., 2020, 121, 109679. doi: 10.1016/j.biopha.2019.109679 PMID: 31810118
- Kolomeichuk, S.N.; Terrano, D.T.; Lyle, C.S.; Sabapathy, K.; Chambers, T.C. Distinct signaling pathways of microtubule inhibitors – vinblastine and Taxol induce JNK‐dependent cell death but through AP‐1‐dependent and AP‐1‐independent mechanisms, respectively. FEBS J., 2008, 275(8), 1889-1899. doi: 10.1111/j.1742-4658.2008.06349.x PMID: 18341588
- Kamath, A.; Mehal, W.; Jain, D. Colchicine-associated ring mitosis in liver biopsy and their clinical implications. J. Clin. Gastroenterol., 2008, 42(9), 1060-1062. doi: 10.1097/MCG.0b013e31803815b4 PMID: 18391833
- Kyriakis, J.M.; Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol. Rev., 2012, 92(2), 689-737. doi: 10.1152/physrev.00028.2011 PMID: 22535895
- Kyriakis, J.M.; Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev., 2001, 92(2), 689-737. doi: 10.1152/physrev.2001.81.2.807
- Kyriakis, J.M.; Avruch, J. Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays, 1996, 18(7), 567-577. doi: 10.1002/bies.950180708 PMID: 8757935
- Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science (1979)., 1995, 270(5240), 1326-1331. doi: 10.1126/science.270.5240.1326
- Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells, 2021, 10(10), 2509. doi: 10.3390/cells10102509 PMID: 34685488
- Lim, W.; Jeong, M.; Bazer, F.W.; Song, G. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J. Cell. Physiol., 2017, 232(4), 862-871. doi: 10.1002/jcp.25494 PMID: 27431052
- Alliana, S.A.; Menou, L.; Manié, S.; Antomarchi, S.H.; Millet, M.A.; Giuriato, S.; Ferrua, B.; Rossi, B. Microtubule integrity regulates src-like and extracellular signal-regulated kinase activities in human pro-monocytic cells. Importance for interleukin-1 production. J. Biol. Chem., 1998, 273(6), 3394-3400. doi: 10.1074/jbc.273.6.3394 PMID: 9452460
- Nair, R.R.; Schwarz, LA. Microtubule-disrupting agents increase transgene expression in A549 cells through the activation of the Src and ERK kinase pathway. Mol. Ther., 2003, 7, 5.
- Samarakoon, R.; Higgins, P.J. MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. J. Cell Sci., 2002, 115(15), 3093-3103. doi: 10.1242/jcs.115.15.3093 PMID: 12118065
Supplementary files
