N-Degron PROTACs as a Potential Therapeutic Approach for Chronic Myeloid Leukemia


Cite item

Full Text

Abstract

Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML. A current therapeutic approach for the treatment of CML, Tyrosine Kinase Inhibitors (TKIs), effectively inactivates BCR-ABL1 kinase activity; however, drug resistance to TKIs limits the long-term potential for this treatment. Proteolysis Targeting Chimera (PROTAC) has emerged as a promising pharmacological approach for degrading, rather than inhibiting, targeted proteins by harnessing the ubiquitin-proteosome system. This process involves tagging a Protein of Interest (POI) with ubiquitin by the E3 ubiquitin ligases, which subsequently target the protein for proteasomal degradation. The N-end rule or the N-degron concept describes the correlation between the metabolic stability of a protein and the biochemical identity of its N-terminal amino acid. A recent work unveiled that N-degron PROTACs could offer a potential treatment for CML by targeting and degrading BCR-ABL1 proteins. Herein, we present the molecular and biochemical implications for targeting chronic myeloid leukemia.

About the authors

Grace Hohman

Department of Chemistry, Illinois State University

Email: info@benthamscience.net

Mohamed Eldeeb

Department of Chemistry, Illinois State University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Eldeeb, M.A.; Leitao, L.C.A.; Fahlman, R.P. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol., 2018, 96(3), 289-294. doi: 10.1139/bcb-2017-0274 PMID: 29253354
  2. Varshavsky, A. N-degron pathways. Proc. Natl. Acad. Sci. USA, 2024, 121(39), e2408697121. doi: 10.1073/pnas.2408697121 PMID: 39264755
  3. Tyagi, S.; Singh, A.; Sharma, N.; Chaturvedi, R.; Kushwaha, H.R. Insights into existing and futuristic treatment approach for chronic myeloid leukaemia. Indian J. Med. Res., 2024, 159(5), 455-467. doi: 10.25259/ijmr_1716_22 PMID: 39382408
  4. Zhang, J.; Ma, C.; Yu, Y.; Liu, C.; Fang, L.; Rao, H. Single amino acid–based PROTACs trigger degradation of the oncogenic kinase BCR–ABL in chronic myeloid leukemia (CML). J. Biol. Chem., 2023, 299(8), 104994. doi: 10.1016/j.jbc.2023.104994 PMID: 37392851
  5. Shanmugasundaram, K.; Shao, P.; Chen, H.; Campos, B.; McHardy, S.F.; Luo, T.; Rao, H. A modular PROTAC design for target destruction using a degradation signal based on a single amino acid. J. Biol. Chem., 2019, 294(41), 15172-15175. doi: 10.1074/jbc.AC119.010790 PMID: 31511327
  6. He, M.; Cao, C.; Ni, Z.; Liu, Y.; Song, P.; Hao, S.; He, Y.; Sun, X.; Rao, Y. PROTACs: Great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct. Target. Ther., 2022, 7(1), 181. doi: 10.1038/s41392-022-00999-9 PMID: 35680848
  7. Li, K.; Crews, C.M. PROTACs: Past, present and future. Chem. Soc. Rev., 2022, 51(12), 5214-5236. doi: 10.1039/D2CS00193D PMID: 35671157
  8. Malarvannan, M.; Unnikrishnan, S.; Monohar, S.; Ravichandiran, V.; Paul, D. Design and optimization strategies of PROTACs and its Application, Comparisons to other targeted protein degradation for multiple oncology therapies. Bioorg. Chem., 2025, 154, 107984. doi: 10.1016/j.bioorg.2024.107984 PMID: 39591691
  9. Kargbo, R.B. A new frontier in targeted therapies: Harnessing PROTACs and advanced delivery systems. ACS Med. Chem. Lett., 2024, 15(11), 1818-1820. doi: 10.1021/acsmedchemlett.4c00489 PMID: 39563812
  10. Imaide, S.; Riching, K.M.; Makukhin, N.; Vetma, V.; Whitworth, C.; Hughes, S.J.; Trainor, N.; Mahan, S.D.; Murphy, N.; Cowan, A.D.; Chan, K.H.; Craigon, C.; Testa, A.; Maniaci, C.; Urh, M.; Daniels, D.L.; Ciulli, A. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol., 2021, 17(11), 1157-1167. doi: 10.1038/s41589-021-00878-4 PMID: 34675414
  11. Cheng, J.; Zhang, J.; He, S.; Li, M.; Dong, G.; Sheng, C. Photoswitchable PROTACs for reversible and spatiotemporal regulation of NAMPT and NAD +. Angew. Chem. Int. Ed., 2024, 63(12), e202315997. doi: 10.1002/anie.202315997 PMID: 38282119
  12. Guan, X.; Xu, X.; Tao, Y.; Deng, X.; He, L.; Lin, Z.; Chang, J.; Huang, J.; Zhou, D.; Yu, X.; Wei, M.; Zhang, L. Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy. J. Nanobiotechnol., 2024, 22(1), 692. doi: 10.1186/s12951-024-02967-7 PMID: 39523308
  13. Salerno, A.; Seghetti, F.; Caciolla, J.; Uliassi, E.; Testi, E.; Guardigni, M.; Roberti, M.; Milelli, A.; Bolognesi, M.L. Enriching proteolysis targeting chimeras with a second modality: When two are better than one. J. Med. Chem., 2022, 65(14), 9507-9530. doi: 10.1021/acs.jmedchem.2c00302 PMID: 35816671
  14. Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372. doi: 10.1021/jm7009364 PMID: 18181565
  15. Fuchter, M.J. On the promise of photopharmacology using photoswitches: A medicinal chemist’s perspective. J. Med. Chem., 2020, 63(20), 11436-11447. doi: 10.1021/acs.jmedchem.0c00629 PMID: 32511922
  16. Casi, G.; Neri, D. Antibody–Drug Conjugates and Small Molecule–drug conjugates: Opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem., 2015, 58(22), 8751-8761. doi: 10.1021/acs.jmedchem.5b00457 PMID: 26079148
  17. Cummings, M.D.; Sekharan, S. Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands. J. Med. Chem., 2019, 62(15), 6843-6853. doi: 10.1021/acs.jmedchem.8b01985 PMID: 30860377
  18. Ghidini, A.; Cléry, A.; Halloy, F.; Allain, F.H.T.; Hall, J. RNA‐PROTACs: Degraders of RNA‐binding proteins. Angew. Chem. Int. Ed., 2021, 60(6), 3163-3169. doi: 10.1002/anie.202012330 PMID: 33108679
  19. Wan, W.B.; Seth, P.P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem., 2016, 59(21), 9645-9667. doi: 10.1021/acs.jmedchem.6b00551 PMID: 27434100
  20. Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144. doi: 10.1016/j.pharmthera.2017.02.027 PMID: 28223226
  21. Roy, M.J.; Winkler, S.; Hughes, S.J.; Whitworth, C.; Galant, M.; Farnaby, W.; Rumpel, K.; Ciulli, A. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol., 2019, 14(3), 361-368. doi: 10.1021/acschembio.9b00092 PMID: 30721025
  22. Scott, J.S.; Michaelides, I.N.; Schade, M. Property-based optimisation of PROTACs. RSC Med. Chem., 2024 Epub ahead of print. doi: 10.1039/D4MD00769G PMID: 39553465
  23. Omar, E.A.; R, R.; Das, P.K.; Pal, R.; Purawarga Matada, G.S.; Maji, L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur. J. Med. Chem., 2025, 281, 117034. doi: 10.1016/j.ejmech.2024.117034 PMID: 39527893
  24. Li, X.; Pu, W.; Zheng, Q.; Ai, M.; Chen, S.; Peng, Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer, 2022, 21(1), 99. doi: 10.1186/s12943-021-01434-3 PMID: 35410300
  25. Qi, S.M.; Dong, J.; Xu, Z.Y.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy. Front. Pharmacol., 2021, 12, 692574. doi: 10.3389/fphar.2021.692574 PMID: 34025443
  26. Eldeeb, M.A.; Fahlman, R.P.; Esmaili, M.; Ragheb, M.A. Regulating apoptosis by degradation: The N-End rule-mediated regulation of apoptotic proteolytic fragments in mammalian cells. Int. J. Mol. Sci., 2018, 19(11), 3414. doi: 10.3390/ijms19113414 PMID: 30384441
  27. Eldeeb, M.A.; Zorca, C.E.; Fahlman, R.P. Targeting cancer cells via N-degron-based PROTACs. Endocrinology, 2020, 161(12), bqaa185. doi: 10.1210/endocr/bqaa185 PMID: 33159513
  28. Eldeeb, M.; Esmaili, M.; Fahlman, R. Degradation of proteins with N-terminal glycine. Nat. Struct. Mol. Biol., 2019, 26(9), 761-763. doi: 10.1038/s41594-019-0291-1 PMID: 31477902
  29. Amarante-Mendes, G.P.; Rana, A.; Datoguia, T.S.; Hamerschlak, N.; Brumatti, G. BCR-ABL1 tyrosine kinase complex signaling transduction: Challenges to overcome resistance in chronic Myeloid leukemia. Pharmaceutics, 2022, 14(1), 215. doi: 10.3390/pharmaceutics14010215 PMID: 35057108
  30. Atallah, E.L.; Mauro, M.J.; Sasaki, K.; Levy, M.Y.; Koller, P.; Yang, D.; Laine, D.; Sabo, J.; Gu, E.; Cortes, J.E. Dose-escalation of second-line and first-line asciminib in chronic myeloid leukemia in chronic phase: The ASC2ESCALATE Phase II trial. Future Oncol., 2024, 20(38), 3065-3075. doi: 10.1080/14796694.2024.2402680 PMID: 39387441
  31. Hořínková, J.; Šíma, M.; Slanař, O. Pharmacokinetics of dasatinib. Prague Med. Rep., 2019, 120(2-3), 52-63. doi: 10.14712/23362936.2019.10 PMID: 31586504
  32. Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200. doi: 10.1038/s41573-021-00371-6 PMID: 35042991
  33. Gregory, J.A.; Hickey, C.M.; Chavez, J.; Cacace, A.M. New therapies on the horizon: Targeted protein degradation in neuroscience. Cell Chem Biol., 2024, 31(9), 1688-1698. doi: 10.1016/j.chembiol.2024.08.010 PMID: 39303702
  34. Yao, D.; Li, T.; Yu, L.; Hu, M.; He, Y.; Zhang, R.; Wu, J.; Li, S.; Kuang, W.; Yang, X.; Liu, G.; Xie, Y. Selective degradation of hyperphosphorylated tau by proteolysis-targeting chimeras ameliorates cognitive function in Alzheimer’s disease model mice. Front. Pharmacol., 2024, 15, 1351792. doi: 10.3389/fphar.2024.1351792 PMID: 38919259
  35. Qu, J.; Ren, X.; Xue, F.; He, Y.; Zhang, R.; Zheng, Y.; Huang, H.; Wang, W.; Zhang, J. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol., 2020, 27(6), 751-762.e4. doi: 10.1016/j.chembiol.2020.03.010 PMID: 32359427
  36. Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel–Lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298. doi: 10.1021/acs.jmedchem.9b01264 PMID: 31539241
  37. Liu, Y.; Wang, Z.; Cang, Y. Mini PROTACs: N-end rule-mediated degradation on the horizon. Trends Biochem. Sci., 2024, 49(1), 5-7. doi: 10.1016/j.tibs.2023.10.001 PMID: 37923612

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers