N-Degron PROTACs as a Potential Therapeutic Approach for Chronic Myeloid Leukemia
- Authors: Hohman G.1, Eldeeb M.1
-
Affiliations:
- Department of Chemistry, Illinois State University
- Issue: Vol 25, No 12 (2025)
- Pages: 813-817
- Section: Chemistry
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694424
- DOI: https://doi.org/10.2174/0118715206367166241230111659
- ID: 694424
Cite item
Full Text
Abstract
Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML. A current therapeutic approach for the treatment of CML, Tyrosine Kinase Inhibitors (TKIs), effectively inactivates BCR-ABL1 kinase activity; however, drug resistance to TKIs limits the long-term potential for this treatment. Proteolysis Targeting Chimera (PROTAC) has emerged as a promising pharmacological approach for degrading, rather than inhibiting, targeted proteins by harnessing the ubiquitin-proteosome system. This process involves tagging a Protein of Interest (POI) with ubiquitin by the E3 ubiquitin ligases, which subsequently target the protein for proteasomal degradation. The N-end rule or the N-degron concept describes the correlation between the metabolic stability of a protein and the biochemical identity of its N-terminal amino acid. A recent work unveiled that N-degron PROTACs could offer a potential treatment for CML by targeting and degrading BCR-ABL1 proteins. Herein, we present the molecular and biochemical implications for targeting chronic myeloid leukemia.
Keywords
About the authors
Grace Hohman
Department of Chemistry, Illinois State University
Email: info@benthamscience.net
Mohamed Eldeeb
Department of Chemistry, Illinois State University
Author for correspondence.
Email: info@benthamscience.net
References
- Eldeeb, M.A.; Leitao, L.C.A.; Fahlman, R.P. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol., 2018, 96(3), 289-294. doi: 10.1139/bcb-2017-0274 PMID: 29253354
- Varshavsky, A. N-degron pathways. Proc. Natl. Acad. Sci. USA, 2024, 121(39), e2408697121. doi: 10.1073/pnas.2408697121 PMID: 39264755
- Tyagi, S.; Singh, A.; Sharma, N.; Chaturvedi, R.; Kushwaha, H.R. Insights into existing and futuristic treatment approach for chronic myeloid leukaemia. Indian J. Med. Res., 2024, 159(5), 455-467. doi: 10.25259/ijmr_1716_22 PMID: 39382408
- Zhang, J.; Ma, C.; Yu, Y.; Liu, C.; Fang, L.; Rao, H. Single amino acid–based PROTACs trigger degradation of the oncogenic kinase BCR–ABL in chronic myeloid leukemia (CML). J. Biol. Chem., 2023, 299(8), 104994. doi: 10.1016/j.jbc.2023.104994 PMID: 37392851
- Shanmugasundaram, K.; Shao, P.; Chen, H.; Campos, B.; McHardy, S.F.; Luo, T.; Rao, H. A modular PROTAC design for target destruction using a degradation signal based on a single amino acid. J. Biol. Chem., 2019, 294(41), 15172-15175. doi: 10.1074/jbc.AC119.010790 PMID: 31511327
- He, M.; Cao, C.; Ni, Z.; Liu, Y.; Song, P.; Hao, S.; He, Y.; Sun, X.; Rao, Y. PROTACs: Great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct. Target. Ther., 2022, 7(1), 181. doi: 10.1038/s41392-022-00999-9 PMID: 35680848
- Li, K.; Crews, C.M. PROTACs: Past, present and future. Chem. Soc. Rev., 2022, 51(12), 5214-5236. doi: 10.1039/D2CS00193D PMID: 35671157
- Malarvannan, M.; Unnikrishnan, S.; Monohar, S.; Ravichandiran, V.; Paul, D. Design and optimization strategies of PROTACs and its Application, Comparisons to other targeted protein degradation for multiple oncology therapies. Bioorg. Chem., 2025, 154, 107984. doi: 10.1016/j.bioorg.2024.107984 PMID: 39591691
- Kargbo, R.B. A new frontier in targeted therapies: Harnessing PROTACs and advanced delivery systems. ACS Med. Chem. Lett., 2024, 15(11), 1818-1820. doi: 10.1021/acsmedchemlett.4c00489 PMID: 39563812
- Imaide, S.; Riching, K.M.; Makukhin, N.; Vetma, V.; Whitworth, C.; Hughes, S.J.; Trainor, N.; Mahan, S.D.; Murphy, N.; Cowan, A.D.; Chan, K.H.; Craigon, C.; Testa, A.; Maniaci, C.; Urh, M.; Daniels, D.L.; Ciulli, A. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol., 2021, 17(11), 1157-1167. doi: 10.1038/s41589-021-00878-4 PMID: 34675414
- Cheng, J.; Zhang, J.; He, S.; Li, M.; Dong, G.; Sheng, C. Photoswitchable PROTACs for reversible and spatiotemporal regulation of NAMPT and NAD +. Angew. Chem. Int. Ed., 2024, 63(12), e202315997. doi: 10.1002/anie.202315997 PMID: 38282119
- Guan, X.; Xu, X.; Tao, Y.; Deng, X.; He, L.; Lin, Z.; Chang, J.; Huang, J.; Zhou, D.; Yu, X.; Wei, M.; Zhang, L. Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy. J. Nanobiotechnol., 2024, 22(1), 692. doi: 10.1186/s12951-024-02967-7 PMID: 39523308
- Salerno, A.; Seghetti, F.; Caciolla, J.; Uliassi, E.; Testi, E.; Guardigni, M.; Roberti, M.; Milelli, A.; Bolognesi, M.L. Enriching proteolysis targeting chimeras with a second modality: When two are better than one. J. Med. Chem., 2022, 65(14), 9507-9530. doi: 10.1021/acs.jmedchem.2c00302 PMID: 35816671
- Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372. doi: 10.1021/jm7009364 PMID: 18181565
- Fuchter, M.J. On the promise of photopharmacology using photoswitches: A medicinal chemist’s perspective. J. Med. Chem., 2020, 63(20), 11436-11447. doi: 10.1021/acs.jmedchem.0c00629 PMID: 32511922
- Casi, G.; Neri, D. Antibody–Drug Conjugates and Small Molecule–drug conjugates: Opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem., 2015, 58(22), 8751-8761. doi: 10.1021/acs.jmedchem.5b00457 PMID: 26079148
- Cummings, M.D.; Sekharan, S. Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands. J. Med. Chem., 2019, 62(15), 6843-6853. doi: 10.1021/acs.jmedchem.8b01985 PMID: 30860377
- Ghidini, A.; Cléry, A.; Halloy, F.; Allain, F.H.T.; Hall, J. RNA‐PROTACs: Degraders of RNA‐binding proteins. Angew. Chem. Int. Ed., 2021, 60(6), 3163-3169. doi: 10.1002/anie.202012330 PMID: 33108679
- Wan, W.B.; Seth, P.P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem., 2016, 59(21), 9645-9667. doi: 10.1021/acs.jmedchem.6b00551 PMID: 27434100
- Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144. doi: 10.1016/j.pharmthera.2017.02.027 PMID: 28223226
- Roy, M.J.; Winkler, S.; Hughes, S.J.; Whitworth, C.; Galant, M.; Farnaby, W.; Rumpel, K.; Ciulli, A. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol., 2019, 14(3), 361-368. doi: 10.1021/acschembio.9b00092 PMID: 30721025
- Scott, J.S.; Michaelides, I.N.; Schade, M. Property-based optimisation of PROTACs. RSC Med. Chem., 2024 Epub ahead of print. doi: 10.1039/D4MD00769G PMID: 39553465
- Omar, E.A.; R, R.; Das, P.K.; Pal, R.; Purawarga Matada, G.S.; Maji, L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur. J. Med. Chem., 2025, 281, 117034. doi: 10.1016/j.ejmech.2024.117034 PMID: 39527893
- Li, X.; Pu, W.; Zheng, Q.; Ai, M.; Chen, S.; Peng, Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer, 2022, 21(1), 99. doi: 10.1186/s12943-021-01434-3 PMID: 35410300
- Qi, S.M.; Dong, J.; Xu, Z.Y.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy. Front. Pharmacol., 2021, 12, 692574. doi: 10.3389/fphar.2021.692574 PMID: 34025443
- Eldeeb, M.A.; Fahlman, R.P.; Esmaili, M.; Ragheb, M.A. Regulating apoptosis by degradation: The N-End rule-mediated regulation of apoptotic proteolytic fragments in mammalian cells. Int. J. Mol. Sci., 2018, 19(11), 3414. doi: 10.3390/ijms19113414 PMID: 30384441
- Eldeeb, M.A.; Zorca, C.E.; Fahlman, R.P. Targeting cancer cells via N-degron-based PROTACs. Endocrinology, 2020, 161(12), bqaa185. doi: 10.1210/endocr/bqaa185 PMID: 33159513
- Eldeeb, M.; Esmaili, M.; Fahlman, R. Degradation of proteins with N-terminal glycine. Nat. Struct. Mol. Biol., 2019, 26(9), 761-763. doi: 10.1038/s41594-019-0291-1 PMID: 31477902
- Amarante-Mendes, G.P.; Rana, A.; Datoguia, T.S.; Hamerschlak, N.; Brumatti, G. BCR-ABL1 tyrosine kinase complex signaling transduction: Challenges to overcome resistance in chronic Myeloid leukemia. Pharmaceutics, 2022, 14(1), 215. doi: 10.3390/pharmaceutics14010215 PMID: 35057108
- Atallah, E.L.; Mauro, M.J.; Sasaki, K.; Levy, M.Y.; Koller, P.; Yang, D.; Laine, D.; Sabo, J.; Gu, E.; Cortes, J.E. Dose-escalation of second-line and first-line asciminib in chronic myeloid leukemia in chronic phase: The ASC2ESCALATE Phase II trial. Future Oncol., 2024, 20(38), 3065-3075. doi: 10.1080/14796694.2024.2402680 PMID: 39387441
- Hořínková, J.; Šíma, M.; Slanař, O. Pharmacokinetics of dasatinib. Prague Med. Rep., 2019, 120(2-3), 52-63. doi: 10.14712/23362936.2019.10 PMID: 31586504
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200. doi: 10.1038/s41573-021-00371-6 PMID: 35042991
- Gregory, J.A.; Hickey, C.M.; Chavez, J.; Cacace, A.M. New therapies on the horizon: Targeted protein degradation in neuroscience. Cell Chem Biol., 2024, 31(9), 1688-1698. doi: 10.1016/j.chembiol.2024.08.010 PMID: 39303702
- Yao, D.; Li, T.; Yu, L.; Hu, M.; He, Y.; Zhang, R.; Wu, J.; Li, S.; Kuang, W.; Yang, X.; Liu, G.; Xie, Y. Selective degradation of hyperphosphorylated tau by proteolysis-targeting chimeras ameliorates cognitive function in Alzheimer’s disease model mice. Front. Pharmacol., 2024, 15, 1351792. doi: 10.3389/fphar.2024.1351792 PMID: 38919259
- Qu, J.; Ren, X.; Xue, F.; He, Y.; Zhang, R.; Zheng, Y.; Huang, H.; Wang, W.; Zhang, J. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol., 2020, 27(6), 751-762.e4. doi: 10.1016/j.chembiol.2020.03.010 PMID: 32359427
- Zhao, Q.; Ren, C.; Liu, L.; Chen, J.; Shao, Y.; Sun, N.; Sun, R.; Kong, Y.; Ding, X.; Zhang, X.; Xu, Y.; Yang, B.; Yin, Q.; Yang, X.; Jiang, B. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel–Lindau (VHL) E3 ubiquitin ligase. J. Med. Chem., 2019, 62(20), 9281-9298. doi: 10.1021/acs.jmedchem.9b01264 PMID: 31539241
- Liu, Y.; Wang, Z.; Cang, Y. Mini PROTACs: N-end rule-mediated degradation on the horizon. Trends Biochem. Sci., 2024, 49(1), 5-7. doi: 10.1016/j.tibs.2023.10.001 PMID: 37923612
Supplementary files
