Crocin Suppresses Colorectal Cancer Cell Proliferation by Regulating miR-143/145 and KRAS/RREB1 Pathways
- Authors: Hosseini S.1, Nazifi P.1, Amini M.1, Zargari F.2, Yari A.1, Baradaran B.1, Mahboob S.1, Mokhtarzadeh A.1
-
Affiliations:
- Immunology Research Center, Tabriz University of Medical Sciences
- Department of Medical Science, Marand Branch, Islamic Azad University
- Issue: Vol 23, No 17 (2023)
- Pages: 1916-1923
- Section: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694364
- DOI: https://doi.org/10.2174/1871520623666230718145100
- ID: 694364
Cite item
Full Text
Abstract
Background: As a chemoprevention agent, crocin effectively decreases the risk of human cancers, including colorectal cancer (CRC). However, the mechanism underlying the anti-cancer effects of crocin is not entirely explained. Considering that in this study, we investigated the crocin effect on miR-143/145 and related signaling pathways in CRC cells.
Methods: HCT-116 and HT-29 CRC cells were treated with different concentrations of crocin and then were subjected to MTT and qRT-PCR assays to investigate cell viability and miR-143/miR-145, KRAS, and RREB1 expression, respectively. Also, western blotting was performed to evaluate gene expression at protein levels.
Results: Our results showed that treating CRC cells with crocin decreases cell viability by upregulating miR-143/145 expression and reducing KRAS and RREB1 expression dose-dependently. These effects on gene expression in CRC cells were reversed by removing crocin from the media after 48 h. Furthermore, western blotting results exhibited that crocin significantly reduced the protein expression of KRAS and RREB1. Also, it was found that treatment of CRC cells by crocin led to the inactivation of AKT by decreasing its phosphorylation.
Conclusions:This study suggests that crocin may inhibit CRC cell proliferation by modulating KRAS, REEB1, and AKT signaling pathways mediated through miR-143/145 upregulation.
About the authors
Seyed Hosseini
Immunology Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Paria Nazifi
Immunology Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Mohammad Amini
Immunology Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Felor Zargari
Department of Medical Science, Marand Branch, Islamic Azad University
Email: info@benthamscience.net
Amir Yari
Immunology Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Behzad Baradaran
Immunology Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Soltanali Mahboob
Immunology Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Ahad Mokhtarzadeh
Immunology Research Center, Tabriz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers, 2021, 13(9), 2025. doi: 10.3390/cancers13092025 PMID: 33922197
- Alzahrani, S.; Al Doghaither, H.; Al-Ghafari, A. General insight into cancer: An overview of colorectal cancer (Review). Mol. Clin. Oncol., 2021, 15(6), 271. doi: 10.3892/mco.2021.2433 PMID: 34790355
- Jeught, K.V.; Xu, H.C.; Li, Y.J.; Lu, X.B.; Ji, G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol., 2018, 24(34), 3834-3848. doi: 10.3748/wjg.v24.i34.3834 PMID: 30228778
- Katona, B.W.; Weiss, J.M. Chemoprevention of colorectal cancer. Gastroenterology, 2020, 158(2), 368-388. doi: 10.1053/j.gastro.2019.06.047 PMID: 31563626
- Veisi, A.; Akbari, G.; Mard, S.A.; Badfar, G.; Zarezade, V.; Mirshekar, M.A. Role of crocin in several cancer cell lines: An updated re-view. Iran. J. Basic Med. Sci., 2020, 23(1), 3-12. PMID: 32405344
- Saravani, R.; Sargazi, S.; Saravani, R.; Rabbani, M.; Rahdar, A.; Taboada, P. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. J. Drug Deliv. Sci. Technol., 2020, 60, 101987. doi: 10.1016/j.jddst.2020.101987
- Bi, X.; Jiang, Z.; Luan, Z.; Qiu, D. Crocin exerts anti-proliferative and apoptotic effects on cutaneous squamous cell carcinoma via miR-320a/ATG2B. Bioengineered, 2021, 12(1), 4569-4580. doi: 10.1080/21655979.2021.1955175 PMID: 34320900
- Hosseini, S.S.; Reihani, R.Z.; Doustvandi, M.A.; Amini, M.; Zargari, F.; Baradaran, B.; Yari, A.; Hashemi, M.; Tohidast, M.; Mokhtarzadeh, A. Synergistic anticancer effects of curcumin and crocin on human colorectal cancer cells. Mol. Biol. Rep., 2022, 49(9), 8741-8752. doi: 10.1007/s11033-022-07719-0 PMID: 35988102
- Poli, V.; Seclì, L.; Avalle, L. The microRNA-143/145 cluster in tumors: a matter of where and when. Cancers (Basel), 2020, 12(3), 708. doi: 10.3390/cancers12030708 PMID: 32192092
- Mustachio, L.M.; Chelariu-Raicu, A.; Szekvolgyi, L.; Roszik, J. Targeting KRAS in cancer: Promising therapeutic strategies. Cancers, 2021, 13(6), 1204. doi: 10.3390/cancers13061204 PMID: 33801965
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1), 17-33. doi: 10.1016/j.cell.2017.06.009 PMID: 28666118
- Del Re, M.; Rofi, E.; Restante, G.; Crucitta, S.; Arrigoni, E.; Fogli, S.; Di Maio, M.; Petrini, I.; Danesi, R. Implications of KRAS mutations in acquired resistance to treatment in NSCLC. Oncotarget, 2018, 9(5), 6630-6643. doi: 10.18632/oncotarget.23553 PMID: 29464099
- Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; Zhu, L.; Wang, J.; Yang, R.; Zhang, Y.; Ren, Z.; Zen, K.; Zhang, J.; Zhang, C-Y. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 2009, 28(10), 1385-1392. doi: 10.1038/onc.2008.474 PMID: 19137007
- Kent, O.A.; Chivukula, R.R.; Mullendore, M.; Wentzel, E.A.; Feldmann, G.; Lee, K.H.; Liu, S.; Leach, S.D.; Maitra, A.; Mendell, J.T. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev., 2010, 24(24), 2754-2759. doi: 10.1101/gad.1950610 PMID: 21159816
- Deng, Y.N.; Xia, Z.; Zhang, P.; Ejaz, S.; Liang, S. Transcription factor RREB1: from target genes towards biological functions. Int. J. Biol. Sci., 2020, 16(8), 1463-1473. doi: 10.7150/ijbs.40834 PMID: 32210733
- Pham, H.; Ekaterina Rodriguez, C.; Donald, G.W.; Hertzer, K.M.; Jung, X.S.; Chang, H.H.; Moro, A.; Reber, H.A.; Hines, O.J.; Eibl, G. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2013, 439(1), 6-11. doi: 10.1016/j.bbrc.2013.08.042 PMID: 23973710
- Sureban, S.M.; May, R.; Qu, D.; Weygant, N.; Chandrakesan, P.; Ali, N.; Lightfoot, S.A.; Pantazis, P.; Rao, C.V.; Postier, R.G.; Houchen, C.W. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS One, 2013, 8(9), e73940. doi: 10.1371/journal.pone.0073940 PMID: 24040120
- Noguchi, S.; Yasui, Y.; Iwasaki, J.; Kumazaki, M.; Yamada, N.; Naito, S.; Akao, Y. Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett., 2013, 328(2), 353-361. doi: 10.1016/j.canlet.2012.10.017 PMID: 23104321
- Zhao, W.G.; Yu, S.N.; Lu, Z.H.; Ma, Y.H.; Gu, Y.M.; Chen, J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis, 2010, 31(10), 1726-1733. doi: 10.1093/carcin/bgq160 PMID: 20675343
- Zhang, Y.; Liu, J.L.; Wang, J. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3085-3096. PMID: 32271426
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921. doi: 10.1158/0008-5472.CAN-14-0155 PMID: 24840647
- Karthika, C.; Hari, B.; Rahman, M.H.; Akter, R.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Akhtar, M.F.; Abdel-Daim, M.M. Multiple strat-egies with the synergistic approach for addressing colorectal cancer. Biomed. Pharmacother., 2021, 140111704. doi: 10.1016/j.biopha.2021.111704 PMID: 34082400
- Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur. J. Cancer, 2021, 149, 165-183. doi: 10.1016/j.ejca.2021.03.009 PMID: 33865202
- Hoshyar, R.; Mollaei, H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J. Pharm. Pharmacol., 2017, 69(11), 1419-1427. doi: 10.1111/jphp.12776 PMID: 28675431
- Luo, Y.; Yu, P.; Zhao, J.; Guo, Q.; Fan, B.; Diao, Y.; Jin, Y.; Zhang, C. Pathogenesis and anti-proliferation mechanisms of Crocin in human gastric carcinoma cells. Int. J. Clin. Exp. Pathol., 2020, 13(5), 912-922. PMID: 32509062
- Zhou, Y.; Xu, Q.; Shang, J.; Lu, L.; Chen, G. Crocin inhibits the migration, invasion, and epithelial‐mesenchymal transition of gastric cancer cells via miR‐320/KLF5/HIF‐1α signaling. J. Cell. Physiol., 2019, 234(10), 17876-17885. doi: 10.1002/jcp.28418 PMID: 30851060
- Forterre, A.; Komuro, H.; Aminova, S.; Harada, M. A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers, 2020, 12(7), 1852. doi: 10.3390/cancers12071852 PMID: 32660045
- Kent, O.A.; Fox-Talbot, K.; Halushka, M.K. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multi-ple targets. Oncogene, 2013, 32(20), 2576-2585. doi: 10.1038/onc.2012.266 PMID: 22751122
- Shi, X.; Wang, J.; Lei, Y.; Cong, C.; Tan, D.; Zhou, X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer. (Review). Mol. Med. Rep., 2019, 19(6), 4529-4535. doi: 10.3892/mmr.2019.10121 PMID: 30942405
- Kamran, S.; Seyedrezazadeh, E.; Shanehbandi, D.; Asadi, M.; Zafari, V.; Shekari, N. Combination therapy with KRAS and P38α siRNA suppresses colorectal cancer growth and development in SW480 cell line. J. Gastrointest. Cancer, 2021, 1-8. PMID: 34292499
- Ghodousi-Dehnavi, E.; Hosseini, R.H.; Arjmand, M.; Nasri, S.; Zamani, Z. A metabolomic investigation of eugenol on colorectal cancer cell line HT-29 by modifying the expression of APC, p53, and KRAS genes. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-9. doi: 10.1155/2021/1448206 PMID: 34840582
Supplementary files
