Surface Modification of Poly(lactide-co-glycolide) Nanoparticles for the Sustained in vitro Release and the Enhanced Cytotoxicity of Chelidonine
- Authors: Hamidia Z.1, Shahanipour K.1, Talebian N.2, Monajemi R.3
-
Affiliations:
- Department of Biochemistry, Islamic Azad University, Falavarjan Branch
- Department of Chemistry, Islamic Azad University, Shahreza Branch
- biology, Islamic Azad University, Falavarjan Branch
- Issue: Vol 23, No 15 (2023)
- Pages: 1774-1782
- Section: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694350
- DOI: https://doi.org/10.2174/1871520623666230502095349
- ID: 694350
Cite item
Full Text
Abstract
Background: Chelidonine is a potent anticancer against several cell lines. However, low bioavailability and water solubility restrict the clinical applications of this compound.
Objective: The aim of this research was to develop a novel formulation of chelidonine encapsulated in the nanoparticles of poly(d l-lactic-co-glycolic acid) (PLGA) employing vitamin E D-α-tocopherol acid polyethylene glycol 1000 succinate (E TPGS) as a modifier to increase bioavailability
Methods: Chelidonine-encapsulated PLGA nanoparticles were fabricated using a single emulsion method and modified by various concentrations of E TPGS. Nanoparticles were recognized in terms of morphology, surface charge, drug release, size, drug loading, and encapsulation efficiency to obtain the optimized formulation. The cytotoxicity of different nanoformulations in HT-29 cells was evaluated using the MTT assay. The cells were stained with propidium iodide and annexin V solution to evaluate apoptosis using flow cytometry.
Results: Spherical nanoparticles prepared with 2% (w/v) of E TPGS had the optimum formulation in the nanometer size range (153 ± 12.3 nm), with a surface charge of -14.06 ± 2.21 mV, encapsulation efficiency of 95.58 ± 3.47%, drug loading of 33.13 ± 0.19%, and drug release profile of 73.54 ± 2.33. In comparison with non-modified nanoparticles and free chelidonine, E TPGS-modified nanoformulations improved anti-cancer capability even after three-months storage.
Conclusion: Our results showed that E TPGS is an effective biomaterial for surface modification of nanoparticles, which can serve as a potential treatment for cancer.
About the authors
Zahra Hamidia
Department of Biochemistry, Islamic Azad University, Falavarjan Branch
Email: info@benthamscience.net
Kahin Shahanipour
Department of Biochemistry, Islamic Azad University, Falavarjan Branch
Author for correspondence.
Email: info@benthamscience.net
Nasrin Talebian
Department of Chemistry, Islamic Azad University, Shahreza Branch
Email: info@benthamscience.net
Ramesh Monajemi
biology, Islamic Azad University, Falavarjan Branch
Email: info@benthamscience.net
References
- Basati, G.; Ghanadi, P.; Abbaszadeh, S. A review of the most important natural antioxidants and effective medicinal plants in traditional medicine on prostate cancer and its disorders. J. Herbmed Pharmacol., 2020, 9(2), 112-120. doi: 10.34172/jhp.2020.15
- Nasrallah, A. El- Sibai, M. Colorectal cancer causes and treatments: A minireview. Open Colorectal Cancer J., 2014, 7(1), 1-4. doi: 10.2174/1876820201407010001
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108. doi: 10.3322/caac.21262 PMID: 25651787
- Dinarvand, R. Sepehri; Manouchehri; Rouhani, H.; Atyabi, F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomedicine, 2011, 6, 877-895. doi: 10.2147/IJN.S18905 PMID: 21720501
- Zhang, J.; Tao, W.; Chen, Y.; Chang, D.; Wang, T.; Zhang, X.; Mei, L.; Zeng, X.; Huang, L. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J. Mater. Sci. Mater. Med., 2015, 26(4), 165. doi: 10.1007/s10856-015-5498-z PMID: 25791459
- Nasri, H.; Shirzad, H. Toxicity and safety of medicinal plants. J. HerbMed Plarmacol., 2013, 2(2), 21-22.
- El-Readi, M.Z.; Eid, S.; Ashour, M.L.; Tahrani, A.; Wink, M. Modulation of multidrug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine, 2013, 20(3-4), 282-294. doi: 10.1016/j.phymed.2012.11.005 PMID: 23238299
- Kim, O.; Hwangbo, C.; Kim, J.; Li, D.H.; Min, B.S.; Lee, J.H. Chelidonine suppresses migration and invasion of MDA-MB-231 cells by inhibiting formation of the integrin-linked kinase/PINCH/α-parvin complex. Mol. Med. Rep., 2015, 12(2), 2161-2168. doi: 10.3892/mmr.2015.3621 PMID: 25890994
- Paul, A.; Bishayee, K.; Ghosh, S.; Mukherjee, A.; Sikdar, S.; Chakraborty, D.; Boujedaini, N.; Khuda-Bukhsh, A.R. Chelidonine isolated from ethanolic extract of Chelidonium majus promotes apoptosis in HeLa cells through p38-p53 and PI3K/AKT signalling pathways. J. Chin. Integr. Med., 2012, 10(9), 1025-1038. doi: 10.3736/jcim20120912 PMID: 22979935
- Paul, A.; Das, S.; Das, J.; Samadder, A.; Khuda-Bukhsh, A.R. Cytotoxicity and apoptotic signalling cascade induced by chelidonine-loaded PLGA nanoparticles in HepG2 cells in vitro and bioavailability of nano-chelidonine in mice in vivo. Toxicol. Lett., 2013, 222(1), 10-22. doi: 10.1016/j.toxlet.2013.07.006 PMID: 23850776
- Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217-223. doi: 10.4103/2278-344X.107832
- Khan, I.; Gothwal, A.; Sharma, A.K.; Kesharwani, P.; Gupta, L.; Iyer, A.K.; Gupta, U. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(2), 159-193. doi: 10.1615/CritRevTherDrugCarrierSyst.2016015273 PMID: 27651101
- Tabatabaei Mirakabad, F.S.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535. doi: 10.7314/APJCP.2014.15.2.517 PMID: 24568455
- Mi, Y.; Liu, Y.; Feng, S.S. Formulation of Docetaxel by folic acid-conjugated d-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials, 2011, 32(16), 4058-4066. doi: 10.1016/j.biomaterials.2011.02.022 PMID: 21396707
- Li, P.Y.; Lai, P.S.; Hung, W.C.; Syu, W.J. Poly(L-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant MCF-7 breast cancer cells. Biomacromolecules, 2010, 11(10), 2576-2582. doi: 10.1021/bm1005195 PMID: 20722436
- Zhu, H.; Chen, H.; Zeng, X.; Wang, Z.; Zhang, X.; Wu, Y.; Gao, Y.; Zhang, J.; Liu, K.; Liu, R.; Cai, L.; Mei, L.; Feng, S.S. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014, 35(7), 2391-2400. doi: 10.1016/j.biomaterials.2013.11.086 PMID: 24360574
- Mu, L.; Feng, S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release, 2003, 86(1), 33-48. doi: 10.1016/S0168-3659(02)00320-6 PMID: 12490371
- Jonderian, A.; Maalouf, R. Formulation and in vitro interaction of rhodamine-B loaded PLGA nanoparticles with cardiac myocytes. Front. Pharmacol., 2016, 7, 458. doi: 10.3389/fphar.2016.00458 PMID: 27999542
- Esmaeili, F.; Atyabi, F.; Dinarvand, R. Preparation of PLGA nanoparticles using TPGS in the spontaneous emulsification solvent diffusion method. J. Exp. Nanosci., 2007, 2(3), 183-192. doi: 10.1080/17458080701393137
- Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci., 2010, 351(1), 19-29. doi: 10.1016/j.jcis.2010.05.022 PMID: 20627257
- Jain, A.K.; Das, M.; Swarnakar, N.K.; Jain, S. Engineered PLGA nanoparticles: An emerging delivery tool in cancer therapeutics. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(1), 1-45. doi: 10.1615/CritRevTherDrugCarrierSyst.v28.i1.10 PMID: 21395514
- Khayata, N.; Abdelwahed, W.; Chehna, M.F.; Charcosset, C.; Fessi, H. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: From laboratory scale to large scale using a membrane contactor. Int. J. Pharm., 2012, 423(2), 419-427. doi: 10.1016/j.ijpharm.2011.12.016 PMID: 22197757
- Kozak, D.; Anderson, W.; Vogel, R.; Chen, S.; Antaw, F.; Trau, M. Simultaneous size and ζ-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano, 2012, 6(8), 6990-6997. doi: 10.1021/nn3020322 PMID: 22809054
- Kulkarni, S.A.; Feng, S.S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res., 2013, 30(10), 2512-2522. doi: 10.1007/s11095-012-0958-3 PMID: 23314933
- Muthu, M.S.; Kulkarni, S.A.; Xiong, J.; Feng, S.S. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int. J. Pharm., 2011, 421(2), 332-340. doi: 10.1016/j.ijpharm.2011.09.045 PMID: 22001537
- Zhou, H.; Qian, H. Preparation and characterization of pH-sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. Drug Des. Devel. Ther., 2018, 12, 2601-2609. doi: 10.2147/DDDT.S170676 PMID: 30174414
- Hamidia, Z.; Shahanipour, K.; Talebian, N.; Monajemi, R. Preparation of chelidonine highly loaded pol (lactide-co-glycolide)-based nanoparticles using a single emulsion method: Cytotoxic effect on MDA-MB-231 cell line. J. Herbmed. Pharmacol., 2022, 11(1), 114-120. doi: 10.34172/jhp.2022.13
- Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377 PMID: 22577513
- Mittal, G.; Sahana, D.K.; Bhardwaj, V.; Ravi Kumar, M.N.V. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Release, 2007, 119(1), 77-85. doi: 10.1016/j.jconrel.2007.01.016 PMID: 17349712
- Kızılbey, K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega, 2019, 4(1), 555-562. doi: 10.1021/acsomega.8b02767
- Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt. Chem., 2016, 80, 30-40. doi: 10.1016/j.trac.2015.06.014
- Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-A review (Part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264. doi: 10.4314/tjpr.v12i2.19
- Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-Circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603. doi: 10.1126/science.8128245 PMID: 8128245
- Pfeffer, C.; Singh, A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448. doi: 10.3390/ijms19020448 PMID: 29393886
- Gaonkar, R.H.; Ganguly, S.; Dewanjee, S.; Sinha, S.; Gupta, A.; Ganguly, S.; Chattopadhyay, D.; Chatterjee Debnath, M. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci. Rep., 2017, 7(1), 530. doi: 10.1038/s41598-017-00696-6 PMID: 28373669
- Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.Ö.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 2019, 15(1), 4-33. doi: 10.1080/15548627.2018.1509171 PMID: 30160607
- Chen, Y.; Mo, L.; Wang, X.; Chen, B.; Hua, Y.; Gong, L.; Yang, F.; Li, Y.; Chen, F.; Zhu, G.; Ni, W.; Zhang, C.; Cheng, Y.; Luo, Y.; Shi, J.; Qiu, M.; Wu, S.; Tan, Z.; Wang, K. TPGS-1000 exhibits potent anticancer activity for hepatocellular carcinoma in vitro and in vivo. Aging, 2020, 12(2), 1624-1642. doi: 10.18632/aging.102704 PMID: 31986488
- Srinivasan, P.; Arul, B.; Kothai, R. Neuroprotective effect of ethanolic leaf extract of Commiphora caudata (Wight & Arn) against lipopolysaccharide-induced neurotoxicity in Wistar rats. J. Herbmed Pharmacol., 2021, 10(4), 500-507. doi: 10.34172/jhp.2021.57
Supplementary files
