Triptolide Induces Apoptosis and Autophagy in Cutaneous Squamous Cell Carcinoma via Akt/mTOR Pathway
- Authors: Zheng Z.1, Yan G.1, Xi N.2, Xu X.2, Zeng Q.2, Wu Y.2, Zheng Y.1, Zhang G.1, Wang X.1
-
Affiliations:
- Institute of Translational Medicine, Medical College, Yangzhou University
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine
- Issue: Vol 23, No 13 (2023)
- Pages: 1596-1604
- Section: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694330
- DOI: https://doi.org/10.2174/1871520623666230413130417
- ID: 694330
Cite item
Full Text
Abstract
Background: Tripterygium wilfordii Hook F provided the source of the first diterpenoid triepoxide lactone, Triptolide, identified as the primary constituent causing the anticancer activity. So far, it has not been reported whether triptolide has a therapeutic effect on cutaneous squamous cell carcinoma (cSCC).
Objective: This study investigates the triptolide's therapeutic impact on cSCC both in vitro and in vivo and investigates the triptolide's potential involvement in signaling pathways.
Methods: The CCK-8 assays, wound healing assays, and colony formation assays were used to assess the effects of triptolide on the proliferation and migration of cSCC cells. The alteration in gene expression following triptolide treatment was shown by RNA sequencing. Flow cytometry was then applied to evaluate cell apoptosis. Western blot was used to find the associated proteins' expressions. The effectiveness of triptolide was then evaluated in vivo using a xenograft model, and histological staining was employed to determine the visceral toxicity.
Results: Triptolide greatly reduces the migratory and proliferative capacity of cSCC cells. Triptolide dramatically decreased cell viability and migration in the A431 and SCL-1 cells compared to the control group, according to the CCK8 assay, wound healing assay, and colony formation assay. Flow cytometry demonstrated that treatment with 10- 40 nM triptolide increased apoptosis in a concentration-dependent manner, with a statistically significant difference. Furthermore, mice given triptolide had smaller tumor sizes than those in the control group. Triptolide treatment drastically altered the expression of autophagic and apoptotic proteins. The considerable reduction in the proteins Akt and mTOR levels further illustrated the critical function of triptolide in cSCC.
Conclusion: Triptolide caused cSCC cells to engage in autophagy and apoptosis by inhibiting the Akt/mTOR signaling pathways. Triptolide may be a possible antitumor agent for the treatment of cSCC.
Keywords
About the authors
Zhe Zheng
Institute of Translational Medicine, Medical College, Yangzhou University
Email: info@benthamscience.net
Guorong Yan
Institute of Translational Medicine, Medical College, Yangzhou University
Email: info@benthamscience.net
Ningyuan Xi
Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine
Email: info@benthamscience.net
Xiaoxiang Xu
Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine
Email: info@benthamscience.net
Qingyu Zeng
Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine
Email: info@benthamscience.net
Yuhao Wu
Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine
Email: info@benthamscience.net
Ying Zheng
Institute of Translational Medicine, Medical College, Yangzhou University
Author for correspondence.
Email: info@benthamscience.net
Guolong Zhang
Institute of Translational Medicine, Medical College, Yangzhou University
Author for correspondence.
Email: info@benthamscience.net
Xiuli Wang
Institute of Translational Medicine, Medical College, Yangzhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Waldman, A.; Schmults, C. Cutaneous squamous cell carcinoma. Hematol. Oncol. Clin. North Am., 2019, 33(1), 1-12. doi: 10.1016/j.hoc.2018.08.001 PMID: 30497667
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol., 2018, 78(2), 237-247. doi: 10.1016/j.jaad.2017.08.059 PMID: 29332704
- Chang, D.; Shain, A.H. The landscape of driver mutations in cutaneous squamous cell carcinoma. NPJ Genom. Med., 2021, 6(1), 61. doi: 10.1038/s41525-021-00226-4 PMID: 34272401
- Fan, X.; Niu, X.; Wu, Z.; Yao, L.; Chen, S.; Wan, W.; Huang, B.; Qi, R.Q.; Zhang, T. Computer image analysis reveals C-Myc as a potential biomarker for discriminating between keratoacanthoma and cutaneous squamous cell carcinoma. BioMed Res. Int., 2022, 2022, 1-17. doi: 10.1155/2022/3168503 PMID: 36051475
- Chen, Y.T.; Hsieh, M.J.; Chen, P.N.; Weng, C.J.; Yang, S.F.; Lin, C.W. Erianin induces apoptosis and autophagy in oral squamous cell carcinoma cells. Am. J. Chin. Med., 2020, 48(1), 183-200. doi: 10.1142/S0192415X2050010X PMID: 31903779
- Corchado-Cobos, R.; García-Sancha, N.; González-Sarmiento, R.; Pérez-Losada, J.; Cañueto, J. Cutaneous squamous cell carcinoma: From biology to therapy. Int. J. Mol. Sci., 2020, 21(8), 2956. doi: 10.3390/ijms21082956 PMID: 32331425
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; Bataille, V.; Bastholt, L.; Dreno, B.; Concetta, F.M.; Forsea, A.M.; Frenard, C.; Harwood, C.A.; Hauschild, A.; Hoeller, C.; Kandolf-Sekulovic, L.; Kaufmann, R.; Kelleners-Smeets, N.W.J.; Malvehy, J.; del Marmol, V.; Middleton, M.R.; Moreno-Ramirez, D.; Pellecani, G.; Peris, K.; Saiag, P.; van den Beuken-van, E.M.H.J.; Vieira, R.; Zalaudek, I.; Eggermont, A.M.M.; Grob, J.J. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur. J. Cancer, 2020, 128, 83-102. doi: 10.1016/j.ejca.2020.01.008 PMID: 32113942
- Wang, Y.; Huang, L.; Tang, X.; Zhang, H. Retrospect and prospect of active principles from Chinese herbs in the treatment of dementia. Acta Pharmacol. Sin., 2010, 31(6), 649-664. doi: 10.1038/aps.2010.46 PMID: 20523337
- Li, X.J.; Jiang, Z.Z.; Zhang, L. Triptolide: Progress on research in pharmacodynamics and toxicology. J. Ethnopharmacol., 2014, 155(1), 67-79. doi: 10.1016/j.jep.2014.06.006 PMID: 24933225
- Law, S.K.Y.; Simmons, M.P.; Techen, N.; Khan, I.A.; He, M.F.; Shaw, P.C.; But, P.P.H. Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordii Hook.f.). Phytochemistry, 2011, 72(1), 21-26. doi: 10.1016/j.phytochem.2010.10.015 PMID: 21094504
- Gao, J.; Zhang, Y.; Liu, X.; Wu, X.; Huang, L.; Gao, W. Triptolide: Pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics, 2021, 11(15), 7199-7221. doi: 10.7150/thno.57745 PMID: 34158845
- Liu, X.; Zhao, P.; Wang, X.; Wang, L.; Zhu, Y.; Gao, W. Triptolide induces glioma cell autophagy and apoptosis via upregulating the ROS/JNK and downregulating the Akt/mTOR signaling pathways. Front. Oncol., 2019, 9, 387. doi: 10.3389/fonc.2019.00387 PMID: 31157167
- Chen, J.; Qiao, Y.; Tang, B.; Chen, G.; Liu, X.; Yang, B.; Wei, J.; Zhang, X.; Cheng, X.; Du, P.; Jiang, W.; Hu, Q.; Hua, Z.C. Modulation of Salmonella tumor-colonization and intratumoral anti-angiogenesis by triptolide and its mechanism. Theranostics, 2017, 7(8), 2250-2260. doi: 10.7150/thno.18816 PMID: 28740548
- Ziaei, S.; Halaby, R. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J. Phytomed., 2016, 6(2), 149-164. PMID: 27222828
- Qiu, D.; Kao, P.N. Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D., 2003, 4(1), 1-18. doi: 10.2165/00126839-200304010-00001 PMID: 12568630
- Jiang, X.; Cao, G.; Gao, G.; Wang, W.; Zhao, J.; Gao, C. Triptolide decreases tumor‐associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor‐derived CXCL12. J. Cell. Physiol., 2021, 236(1), 193-204. doi: 10.1002/jcp.29833 PMID: 32495392
- Sui, B.; Cheng, C.; Shi, S.; Wang, M.; Xu, P. Esterase‐activatable and glutathione‐responsive triptolide nano‐prodrug for the eradication of pancreatic cancer. Adv. NanoBiomed Res., 2021, 1(11), 2100040. doi: 10.1002/anbr.202100040 PMID: 34870282
- Cai, J.; Yi, M.; Tan, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; Xiang, B. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ. J. Exp. Clin. Cancer Res., 2021, 40(1), 190. doi: 10.1186/s13046-021-01995-7 PMID: 34108030
- Qin, G.; Li, P.; Xue, Z. Triptolide induces protective autophagy and apoptosis in human cervical cancer cells by downregulating Akt/mTOR activation. Oncol. Lett., 2018, 16(3), 3929-3934. doi: 10.3892/ol.2018.9074 PMID: 30128010
- Mizushima, N.; Levine, B. Autophagy in human diseases. N. Engl. J. Med., 2020, 383(16), 1564-1576. doi: 10.1056/NEJMra2022774 PMID: 33053285
- Zhou, J.; Jiang, Y.; Chen, H.; Wu, Y.; Zhang, L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif., 2020, 53(2), e12739. doi: 10.1111/cpr.12739 PMID: 31820522
- Feng, F.B.; Qiu, H.Y. RETRACTED: Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed. Pharmacother., 2018, 102, 1209-1220. doi: 10.1016/j.biopha.2018.03.142 PMID: 29710540
- Rong, L.; Li, Z.; Leng, X.; Li, H.; Ma, Y.; Chen, Y.; Song, F. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed. Pharmacother., 2020, 122, 109726. doi: 10.1016/j.biopha.2019.109726 PMID: 31918283
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc., 2016, 11(9), 1650-1667. doi: 10.1038/nprot.2016.095 PMID: 27560171
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2), 166-169. doi: 10.1093/bioinformatics/btu638 PMID: 25260700
- Le, F.; Yang, L.; Han, Y.; Zhong, Y.; Zhan, F.; Feng, Y.; Hu, H.; Chen, T.; Tan, B. TPL inhibits the invasion and migration of drug-resistant ovarian cancer by targeting the PI3K/AKT/NF-κB-signaling pathway to inhibit the polarization of M2 TAMs. Front. Oncol., 2021, 11, 704001. doi: 10.3389/fonc.2021.704001 PMID: 34381726
- Zhong, Y.; Le, F.; Cheng, J.; Luo, C.; Zhang, X.; Wu, X.; Xu, F.; Zuo, Q.; Tan, B. Triptolide inhibits JAK2/STAT3 signaling and induces lethal autophagy through ROS generation in cisplatin resistant SKOV3/DDP ovarian cancer cells. Oncol. Rep., 2021, 45(5), 69. doi: 10.3892/or.2021.8020 PMID: 33760192
- Fusté, N.P.; Fernández-Hernández, R.; Cemeli, T.; Mirantes, C.; Pedraza, N.; Rafel, M.; Torres-Rosell, J.; Colomina, N.; Ferrezuelo, F.; Dolcet, X.; Garí, E. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat. Commun., 2016, 7(1), 11581. doi: 10.1038/ncomms11581 PMID: 27181366
- Kuzmanov, A.; Johansen, P.; Hofbauer, G. FBXO25 promotes cutaneous squamous cell carcinoma growth and metastasis through cyclin D1. J. Invest. Dermatol., 2020, 140(12), 2496-2504. doi: 10.1016/j.jid.2020.04.003 PMID: 32335130
- Shen, Y.; Xu, J.; Jin, J.; Tang, H.; Liang, J. Cyclin D1 expression in Bowen's disease and cutaneous squamous cell carcinoma. Mol. Clin. Oncol., 2014, 2(4), 545-548. doi: 10.3892/mco.2014.273 PMID: 24940492
- Spitz, A.Z.; Gavathiotis, E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci., 2022, 43(3), 206-220. doi: 10.1016/j.tips.2021.11.001 PMID: 34848097
- Jensen, K. WuWong, D.J.; Wong, S.; Matsuyama, M.; Matsuyama, S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp. Biol. Med., 2019, 244(8), 621-629. doi: 10.1177/1535370219833624 PMID: 30836793
- Jiang, X.; Jiang, H.; Shen, Z.; Wang, X. Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc. Natl. Acad. Sci., 2014, 111(41), 14782-14787. doi: 10.1073/pnas.1417253111 PMID: 25275009
- Yélamos, J.; Moreno-Lama, L.; Jimeno, J.; Ali, S.O. Immunomodulatory roles of PARP-1 and PARP-2: Impact on PARP-Centered cancer therapies. Cancers, 2020, 12(2), 392. doi: 10.3390/cancers12020392 PMID: 32046278
- Curtin, N.J.; Szabo, C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov., 2020, 19(10), 711-736. doi: 10.1038/s41573-020-0076-6 PMID: 32884152
- Zhang, L.T.; Ke, L.X.; Wu, X.Y.; Tian, H.T.; Deng, H.Z.; Xu, L.Y.; Li, E.M.; Long, L. TRIP13 induces nedaplatin resistance in esophageal squamous cell carcinoma by enhancing repair of DNA damage and inhibiting apoptosis. BioMed Res. Int., 2022, 2022, 1-16. doi: 10.1155/2022/7295458 PMID: 35601150
- Noel, P.; Von Hoff, D.D.; Saluja, A.K.; Velagapudi, M.; Borazanci, E.; Han, H. Triptolide and its derivatives as cancer therapies. Trends Pharmacol. Sci., 2019, 40(5), 327-341. doi: 10.1016/j.tips.2019.03.002 PMID: 30975442
Supplementary files
