New Approaches for the Synthesis N-alkylated Benzo[b]thiophene Derivatives together with their Antiproliferative and Molecular Docking Studies


Cite item

Full Text

Abstract

Background: 2-Amino thiophene derivatives are important compounds not only for their uses in many heterocyclic reactions but also due to their wide range of pharmaceutical and biological activities.

Objective: The aim of this work was to explore a number of new heterocyclic derivatives, studying their inhibitions toward cancer cell lines and studying their structure activity relation ship.

Methods: Alkylation of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile was achieved through its reaction with chloroacetone and 2-bromo-1-(4-aryl)ethanone derivatives to give compounds 3 and 11a-c. The produced compoumds were subjected to further heterocylization reactions and cytotoxic evaluation against the three cancer cell lines MCF-7, NCI-H460 and SF-268, together with the normal cell line WI 38. Further evaluations were obtained through studying their inhibitions against cancer cell lines classified according to the disease. Anticancer screening against hepatocellular carcinoma HepG2 and cervical carcinoma HeLa cell lines for all compounds together with the molecular docking of 12c, 12d, 12e and 12f were studied.

Results: Anti-proliferative evaluations and inhibitions for all of the synthesized compounds showed that many compounds exhibited high inhibitions.

Conclusion: Toward the three cancer cell lines, compounds 3, 5a, 7a, 9a, 9b, 11b, 12b, 12d, 12e, 12f, 14c, 14e, 14f, 15e, 15f, 16e, 16f, 17c, 18b, 22a and 22c were the most cytotoxic compounds. The high activities of some compounds were attributed to the presence of the electronegative CN and or Cl groups within the molecule. Most of the tested compounds exhibited inhibitions higher than the reference doxorubicin toward hepatocellular carcinoma HepG2 and cervical carcinoma HeLa cell lines. The score of binding energy of compounds 12c, 12d, 12e and 12f was close to the reference Foretinib which appeared through the molecular docking results of such compounds.

About the authors

Karam El-Sharkawy

Pharmaceutical Chemistry Department, Pharmacy College, Jazan University

Email: info@benthamscience.net

Abeer Mohamed

Department of Chemistry,, Egyptian Drug Authority (EDA) 51 Wezaret El-Zeraa St

Email: info@benthamscience.net

Fatma Al Farouk

Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation

Email: info@benthamscience.net

Rafat Mohareb

Department of Chemistry, Faculty of Science,, Cairo University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508. doi: 10.1016/j.ejmech.2019.07.043 PMID: 31330449
  2. Spanò, V.; Barreca, M.; Cilibrasi, V.; Genovese, M.; Renda, M.; Montalbano, A.; Galietta, L.J.V.; Barraja, P. Evaluation of fused pyrrolothiazole systems as correctors of mutant CFTR protein. Molecules, 2021, 26(5), 1275. doi: 10.3390/molecules26051275 PMID: 33652850
  3. Saravanan, G.; Panneerselvam, T.; Alagarsamy, V.; Kunjiappan, S.; Parasuraman, P.; Murugan, I.; Dinesh, K.P. Design, graph theoretical analysis, density functionality theories, In silico modeling, synthesis, characterization and biological activities of novel thiazole fused quinazolinone derivatives. Drug Dev. Res., 2018, 79(6), 260-274. doi: 10.1002/ddr.21460 PMID: 30244475
  4. Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; Montalbano, A. Insight on pyrimido5,4-gindolizine and pyrimido4,5-cpyrrolo1,2-aazepine systems as promising photosensitizers on malignant cells. Eur. J. Med. Chem., 2022, 237, 114399. doi: 10.1016/j.ejmech.2022.114399 PMID: 35468516
  5. Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97, 911-927. doi: 10.1016/j.ejmech.2014.10.058 PMID: 25455640
  6. Xu, T.; Wang, P.; Tian, J.; Qing, S.; Wang, S.; Huang, Y.; Xu, J.; Su, D.; Liu, J.; Miao, C. Pharmacological characterization of MT-1207, a novel multitarget antihypertensive agent. Acta Pharmacol. Sin., 2021, 42(6), 885-897. doi: 10.1038/s41401-021-00636-1 PMID: 33782540
  7. Labbozzetta, M.; Barreca, M.; Spanò, V.; Raimondi, M.V.; Poma, P.; Notarbartolo, M.; Barraja, P.; Montalbano, A. Novel insights on 1,2oxazolo5,4‐eisoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev. Res., 2022, 83(6), 1331-1341. doi: 10.1002/ddr.21962 PMID: 35749723
  8. Priestley, E.S.; Banville, J.; Deon, D.; Dubé, L.; Gagnon, M.; Guy, J.; Lapointe, P.; Lavallée, J.F.; Martel, A.; Plamondon, S.; Rémillard, R.; Ruediger, E.; Tremblay, F.; Posy, S.L.; Guarino, V.R.; Richter, J.M.; Li, J.; Gupta, A.; Vetrichelvan, M.; Balapragalathan, T.J.; Mathur, A.; Hua, J.; Callejo, M.; Guay, J.; Sum, C.S.; Cvijic, M.E.; Watson, C.; Wong, P.; Yang, J.; Bouvier, M.; Gordon, D.A.; Wexler, R.R.; Marinier, A. Discovery of two novel antiplatelet clinical candidates (BMS-986120 and BMS-986141) that antagonize protease-activated receptor 4. J. Med. Chem., 2022, 65(13), 8843-8854. doi: 10.1021/acs.jmedchem.2c00359 PMID: 35729784
  9. Atassi, G.; Tagnon, H.J. R17934-NSC 238159: A new antitumor drug-I. Effect on experimental tumors and factors influencing effectiveness. Eur. J. Cancer, 1975, 11(9), 599-607. doi: 10.1016/0014-2964(75)90092-4 PMID: 1220975
  10. Ye, L.; He, J.; Hu, Z.; Dong, Q.; Wang, H.; Fu, F.; Tian, J. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem. Toxicol., 2013, 52, 200-206. doi: 10.1016/j.fct.2012.11.004 PMID: 23149094
  11. Hama, S.; Utsumi, S.; Fukuda, Y.; Nakayama, K.; Okamura, Y.; Tsuchiya, H.; Fukuzawa, K.; Harashima, H.; Kogure, K. Development of a novel drug delivery system consisting of an antitumor agent tocopheryl succinate. J. Control. Release, 2012, 161(3), 843-851. doi: 10.1016/j.jconrel.2012.05.031 PMID: 22634091
  12. Fakhr, I.M.I.; Radwan, M.A.A.; El-Batran, S.; Abd El-Salam, O.M.E.; El-Shenawy, S.M. Synthesis and pharmacological evaluation of 2-substituted benzobthiophenes as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1718-1725. doi: 10.1016/j.ejmech.2008.02.034 PMID: 18433939
  13. Bondock, S.; Fadaly, W.; Metwally, M.A. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(9), 3692-3701. doi: 10.1016/j.ejmech.2010.05.018 PMID: 20605657
  14. Ryu, C.K.; Lee, S.K.; Han, J.Y.; Jung, O.J.; Lee, J.Y.; Jeong, S.H. Synthesis and antifungal activity of 5-arylamino-4,7-dioxobenzobthiophenes. Bioorg. Med. Chem. Lett., 2005, 15(10), 2617-2620. doi: 10.1016/j.bmcl.2005.03.042 PMID: 15863328
  15. Athri, P.; Wenzler, T.; Ruiz, P.; Brun, R.; Boykin, D.W.; Tidwell, R.; Wilson, W.D. 3D QSAR on a library of heterocyclic diamidine derivatives with antiparasitic activity. Bioorg. Med. Chem., 2010, 45, 1718-1725. PMID: 16442293
  16. Hudson, J.B.; Graham, E.A.; Miki, N.; Towers, G.H.N.; Hudson, L.L.; Rossi, R.; Carpita, A.; Neri, D. Photoactive antiviral and cytotoxic activities of synthetic thiophenes and their acetylenic derivatives. Chemosphere, 1989, 19(8-9), 1329-1343. doi: 10.1016/0045-6535(89)90080-5
  17. Molvi, K.I.; Vasu, K.K.; Yerande, S.G.; Sudarsanam, V.; Haque, N. Syntheses of new tetrasubstituted thiophenes as novel anti-inflammatory agents. Eur. J. Med. Chem., 2007, 42(8), 1049-1058. doi: 10.1016/j.ejmech.2007.01.007 PMID: 17336429
  18. Kulandasamy, R.; Adhikari, A.V.; Stables, J.P. A new class of anticonvulsants possessing 6Hz activity: 3,4-Dialkyloxy thiophene bishydrazones. Eur. J. Med. Chem., 2009, 44(11), 4376-4384. doi: 10.1016/j.ejmech.2009.05.026 PMID: 19556038
  19. Jung, H.J.; Song, Y.S.; Lim, C.J.; Park, E.H. Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of an ethanol extract of Salvia plebeia R. Brown. J. Ethnopharmacol., 2009, 126(2), 355-360. doi: 10.1016/j.jep.2009.08.031 PMID: 19715750
  20. Chi, W.O.; Hong-Chang, L. Antitumor antibiotics drug design. Part II. Synthesis of 4-ethylamido 5,(2′-thienyl)-2-thiophene imidazole iron(II) complex, a new N2S2-metallocycle with a 'built in' intercalating moiety which causes DNA scissioning in vitro. Inorg. Chim. Acta, 1986, 125(4), 203-206. doi: 10.1016/S0020-1693(00)81212-8
  21. Friedman, D.C.S.; Friedman, P. A theoretical study of 2,2′;5′,2″-terthiophene (α-T) and its analogs. Part 1. Correlation of electronic structure and energies with herbicidal phototoxicity. J. Mol. Struct. theochem., 1995, 333(1-2), 71-78. doi: 10.1016/0166-1280(94)03930-J
  22. Parai, M.K.; Panda, G.; Chaturvedi, V.; Manju, Y.K.; Sinha, S. Thiophene containing triarylmethanes as antitubercular agents. Bioorg. Med. Chem. Lett., 2008, 18(1), 289-292. doi: 10.1016/j.bmcl.2007.10.083 PMID: 17997304
  23. Caridha, D.; Kathcart, A.K.; Jirage, D.; Waters, N.C. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg. Med. Chem. Lett., 2010, 20(13), 3863-3867. doi: 10.1016/j.bmcl.2010.05.039 PMID: 20627564
  24. Fear, G.; Komarnytsky, S.; Raskin, I. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol. Ther., 2007, 113(2), 354-368. doi: 10.1016/j.pharmthera.2006.09.001 PMID: 17098288
  25. Al-Najjar, B.O.; Wahab, H.A.; Tengku, M.T.S.; Shu-Chien, A.C.; Ahmad, N.N.A.; Taha, M.O. Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. Eur. J. Med. Chem., 2011, 46(6), 2513-2529. doi: 10.1016/j.ejmech.2011.03.040 PMID: 21482446
  26. Mohareb, R.M.; Abbas, N.S.; Ibrahim, R.A. New approaches for the synthesis of thiophene derivatives with anti-tumor activities. Acta Chim. Slov., 2013, 60(3), 583-594. PMID: 24169713
  27. Mohareb, R.M.; El-Arab, E.Z.; El-Sharkawy, K.A. The reaction of cyanoacetic acid hydrazide with 2-acetylfuran: Synthesis of coumarin, pyridine, thiophene and thiazole derivatives with potential antimicrobial activities. Sci. Pharm., 2009, 77(2), 355-366. doi: 10.3797/scipharm.0901-20
  28. El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno2,3-dpyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111. doi: 10.1016/j.steroids.2015.12.023 PMID: 26772772
  29. Mohareb, R.M.; Megally Abdo, N.Y. Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-acetylcoumarin. Chem. Pharm. Bull., 2015, 63(9), 678-687. doi: 10.1248/cpb.c15-00115 PMID: 26329861
  30. Mohareb, R.M.; Zaki, M.Y.; Abbas, N.S. Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids, 2015, 98, 80-91. doi: 10.1016/j.steroids.2015.03.001 PMID: 25759119
  31. Al-Suwaidan, I.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; El-Sayed, M.A.A.; Alanazi, A.M.; El-Ashmawy, M.B.; Abdel-Aziz, A.A.M. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 679-687. doi: 10.3109/14756366.2014.960863 PMID: 25472776
  32. Pogacic, V.; Bullock, A.N.; Fedorov, O.; Filippakopoulos, P.; Gasser, C.; Biondi, A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J. Structural analysis identifies imidazo1,2-bpyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res., 2007, 67(14), 6916-6924. doi: 10.1158/0008-5472.CAN-07-0320 PMID: 17638903
  33. Cheney, I.W.; Yan, S.; Appleby, T.; Walker, H.; Vo, T.; Yao, N.; Hamatake, R.; Hong, Z.; Wu, J.Z. Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Bioorg. Med. Chem. Lett., 2007, 17(6), 1679-1683. doi: 10.1016/j.bmcl.2006.12.086 PMID: 17251021
  34. Mohareb, R.M.; Hassaneen, H.M.; Ahmed, N.A.M. New approaches for the synthesis thiophene, thiazole, pyran derivatives and their antitumor evaluations. Jacob J. Org. Chem., 2016, 1, 1-13.
  35. Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109. doi: 10.1002/ddr.430340203
  36. Boyd, M.R. Cancer Drug Discovery and Development, 2; Teicher, B.A., Ed.; Humana Press: Totowa, New Jersey, united states, 1997, pp. 23-43.
  37. Garofalo, S.; Rosa, R.; Bianco, R.; Tortora, G. EGFR-targeting agents in oncology. Expert Opin. Ther. Pat., 2008, 18(8), 889-901. doi: 10.1517/13543776.18.8.889
  38. Abdel-Fattah, M.A.; El-Naggar, M.A.M.; Rashied, R.M.H.; Gary, B.D.; Piazza, G.A.; Abadi, A.H. Four-component synthesis of 1,2-dihydropyridine derivatives and their evaluation as anticancer agents. Med. Chem., 2012, 8(3), 392-400. doi: 10.2174/1573406411208030392 PMID: 22530887
  39. Han, X.; Alu, A.; Liu, H.; Shi, Y.; Wei, X.; Cai, L.; Wei, Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact. Mater., 2022, 17, 29-48. doi: 10.1016/j.bioactmat.2022.01.011 PMID: 35386442
  40. Mendieta, I.; Rodríguez-Nieto, M.; Nuñez-Anita, R.E.; Menchaca-Arredondo, J.L.; García-Alcocer, G.; Berumen, L.C.; Laura Berumen, C. Ultrastructural changes associated to the neuroendocrine transdifferentiation of the lung adenocarcinoma cell line A549. Acta Histochem., 2021, 123(8), 151797. doi: 10.1016/j.acthis.2021.151797 PMID: 34688180
  41. Gao, J.; Zhao, Y.; Wang, C.; Ji, H.; Yu, J.; Liu, C.; Liu, A. A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway. Int. J. Biol. Macromol., 2020, 158, 689-697. doi: 10.1016/j.ijbiomac.2020.05.016 PMID: 32387597
  42. Nunhart, P.; Konkoľová, E.; Janovec, L.; Jendželovský, R.; Vargová, J.; Ševc, J.; Matejová, M.; Miltáková, B.; Fedoročko, P.; Kozurkova, M. Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity. Bioorg. Chem., 2020, 94, 103393. doi: 10.1016/j.bioorg.2019.103393 PMID: 31679839
  43. Mohareb, R.M.; Samir, E.M.; Halim, P.A. Synthesis, and anti-proliferative, Pim-1 kinase inhibitors and molecular docking of thiophenes derived from estrone. Bioorg. Chem., 2019, 83, 402-413. doi: 10.1016/j.bioorg.2018.10.067 PMID: 30415021
  44. Javadi, F.; Tayebee, R. Preparation and characterization of ZnO/nanoclinoptilolite as a new nanocomposite and studying its catalytic performance in the synthesis of 2-aminothiophenes via Gewald reaction. Micropor. Mesopor. Mater., 2016, 231, 100-109. doi: 10.1016/j.micromeso.2016.05.025
  45. Han, Y.; Tang, W-Q.; Yan, C-G. Gewald-type reaction of double activated 2,3-diarylcyclopropanes with elemental sulfur for synthesis of polysubstituted 2-aminothiophenes. Tetrahedron Lett., 2014, 55(8), 1441-1443. doi: 10.1016/j.tetlet.2014.01.043
  46. Puterová, Z.; Krutošíková, A.; Végh, D. Gewald reaction: Synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC, 2010, 2010(1), 209-246. doi: 10.3998/ark.5550190.0011.105
  47. Mohareb, R.M.; Sherif, S.M.; Sami, A.M. Heterocyclic synthesis with isothiocyanates: A convenien synthesis of polyfunctionally substituted 2,3-dihydrothiazole, 2-(Pyrazol-4′-yl)-Thaizole, 5-(Thiazol-2′-yl)pyrimidine and Thiazolo-3,2-apyridine derivatives. Phosphorous. Sulfur Silicon, 1995, 101, 57-65. doi: 10.1080/10426509508042499
  48. Mohareb, R.M.; Zohdi, H.F. Heterocyclic synthesis with isothiocyanate: An expeditious synthetic route for polyfunctionally substituted 3-(thiazol-2′-ylidene)pyridines and their fused derivatives. Tetrahedron, 1994, 50, 5807-5820. doi: 10.1016/S0040-4020(01)85648-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bentham Science Publishers