Advancements in Small Molecule PROTACs Containing Indole/Spiro-fused Oxindole Scaffolds: An Emerging Degrader Targeting Cancers
- Authors: Li X.1, Liu Y.2, Huang W.1, Xie X.3, Zhu H.4, Peng C.1, Han B.1
-
Affiliations:
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology,, Chengdu University of Traditional Chinese Medicine
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology,, Chengdu University of Traditional Chinese Medicine,
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University,
- Issue: Vol 23, No 10 (2023)
- Pages: 1164-1173
- Section: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694286
- DOI: https://doi.org/10.2174/1871520622666220509175305
- ID: 694286
Cite item
Full Text
Abstract
:Indole and spiro-fused oxindole frameworks widely exist in a variety of natural bioactive products, pharmaceuticals, and drug candidates, featuring unique functions in the regulation of proliferation, infiltration, and metastasis of cancer cells. In recent years, significant progress in proteolysis targeting chimeric (PROTAC) technology that employs ubiquitin-proteasome system (UPS) to eliminate disease-associated proteins has been witnessed, thus opening a promising avenue to the discovery of new indole-related drugs.
:In this review, we focus on summarizing the achievements of small molecule PROTACs that involve indole/spirofused oxindole scaffolds in the part of ligands of the protein of interest (POI). Current challenges and future directions in this promising field are discussed at the end of this review. For the convenience of readers, our review is divided into five parts according to the types of target proteins. We hope this review could bring a quick look and some inspiration to researchers in relevant fields.
About the authors
Xiang Li
State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yanqing Liu
State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology,, Chengdu University of Traditional Chinese Medicine
Email: info@benthamscience.net
Wei Huang
State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xin Xie
State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology,, Chengdu University of Traditional Chinese Medicine,
Email: info@benthamscience.net
Hongping Zhu
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University,
Email: info@benthamscience.net
Cheng Peng
State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Bo Han
State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Ruiz-Sanchis, P.; Savina, S.A.; Albericio, F.; Alvarez, M. Structure, Bioactivity and Synthesis of Natural Products with Hexahydropyrrolo2,3-b indole. Chem. - Eur. J., 2011, 17(5), 1388-1408. doi: 10.1002/chem.201001451 PMID: 21268138
- Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441. doi: 10.1016/j.ejmech.2014.10.065 PMID: 25462257
- Sidhu, J.S.; Singla, R. Mayank; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A Review. Anticancer. Agents Med. Chem., 2015, 16(2), 160-173. doi: 10.2174/1871520615666150520144217 PMID: 25991424
- Zhao, Q.; Peng, C.; Zheng, C.; He, X-H.; Huang, W.; Han, B. Recent advances in characterizing natural products that regulate autophagy. Anticancer. Agents Med. Chem., 2019, 19(18), 2177-2196. doi: 10.2174/1871520619666191015104458 PMID: 31749434
- Zheng, C.; You, S.L. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat. Prod. Rep., 2019, 36(11), 1589-1605. doi: 10.1039/C8NP00098K PMID: 30839047
- Devi, N.; Kaur, K.; Biharee, A.; Jaitak, V. Recent development in Indole derivatives as anticancer agent: Amechanistic approach. Anticancer. Agents Med. Chem., 2021, 21(14), 1802-1824. doi: 10.2174/1871520621999210104192644 PMID: 33397272
- Chen, F.Y.; Li, X.; Zhu, H.P.; Huang, W. Regulation of the Ras-related signaling pathway by small molecules containing an indole core scaffold: A potential antitumor therapy. Front. Pharmacol., 2020, 11, 280. doi: 10.3389/fphar.2020.00280 PMID: 32231571
- Han, B.; He, X.H.; Liu, Y.Q.; He, G.; Peng, C.; Li, J.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry. Chem. Soc. Rev., 2021, 50(3), 1522-1586. doi: 10.1039/D0CS00196A PMID: 33496291
- Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Eur. J. Med. Chem., 2017, 134, 159-184. doi: 10.1016/j.ejmech.2017.04.003 PMID: 28412530
- Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29. doi: 10.1016/j.ejmech.2018.02.065 PMID: 29505935
- Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183111691 doi: 10.1016/j.ejmech.2019.111691 PMID: 31536895
- Zhu, H.; Li, Y.; Liu, Y.; Han, B. Bivalent SMAC mimetics for treating cancer by antagonizing inhibitor of apoptosis proteins. ChemMedChem, 2019, 14(23), 1951-1962. doi: 10.1002/cmdc.201900410 PMID: 31692274
- Wang, B.; Peng, F.; Huang, W.; Zhou, J.; Zhang, N.; Sheng, J.; Haruehanroengra, P.; He, G.; Han, B. Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharm. Sin. B, 2020, 10(8), 1492-1510. doi: 10.1016/j.apsb.2019.12.013 PMID: 32963945
- Zhang, X.; Li, X.; Li, J-L.; Wang, Q-W.; Zou, W-L.; Liu, Y-Q.; Jia, Z-Q.; Peng, F.; Han, B. Regiodivergent construction of medium-sized heterocycles from vinylethylene carbonates and allylidenemalononitriles. Chem. Sci. (Camb.), 2020, 11(11), 2888-2894. doi: 10.1039/C9SC06377C PMID: 34122789
- Crom, W.R.; de Graaf, S.S.; Synold, T.; Uges, D.R.; Bloemhof, H.; Rivera, G.; Christensen, M.L.; Mahmoud, H.; Evans, W.E. Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J. Pediatr., 1994, 125(4), 642-649. doi: 10.1016/S0022-3476(94)70027-3 PMID: 7931891
- Meschini, S.; Marra, M.; Condello, M.; Calcabrini, A.; Federici, E.; Dupuis, M.L.; Cianfriglia, M.; Arancia, G. Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells. Int. J. Oncol., 2005, 27(6), 1597-1603. PMID: 16273216
- Wang, S.; Sun, W.; Zhao, Y.; McEachern, D.; Meaux, I.; Barrière, C.; Stuckey, J.A.; Meagher, J.L.; Bai, L.; Liu, L.; Hoffman-Luca, C.G.; Lu, J.; Shangary, S.; Yu, S.; Bernard, D.; Aguilar, A.; Dos-Santos, O.; Besret, L.; Guerif, S.; Pannier, P.; Gorge-Bernat, D.; Debussche, L. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res., 2014, 74(20), 5855-5865. doi: 10.1158/0008-5472.CAN-14-0799 PMID: 25145672
- Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; Kwiatkowski, D.J.; Rabin, M.S.; Paweletz, C.P.; Thress, K.S.; Jänne, P.A. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790Mpositive lung cancer and acquired resistance to osimertinib. JAMA Oncol., 2018, 4(11), 1527-1534. doi: 10.1001/jamaoncol.2018.2969 PMID: 30073261
- McKeage, K. Alectinib: A review of its use in advanced ALK-rearranged non-small cell lung cancer. Drugs, 2015, 75(1), 75-82. doi: 10.1007/s40265-014-0329-y PMID: 25428710
- Ricci, S.; Antonuzzo, A.; Galli, L.; Ferdeghini, M.; Bodei, L.; Orlandini, C.; Conte, P.F. Octreotide acetate long-acting release in patients with metastatic neuroendocrine tumors pretreated with lanreotide. Ann. Oncol., 2000, 11(9), 1127-1130. doi: 10.1023/A:1008383132024 PMID: 11061606
- Broder, M.S.; Beenhouwer, D.; Strosberg, J.R.; Neary, M.P.; Cherepanov, D. Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: A systematic literature review. World J. Gastroenterol., 2015, 21(6), 1945-1955. doi: 10.3748/wjg.v21.i6.1945 PMID: 25684964
- Chu, E.; Sartorelli, A. Cancer chemotherapy. Basic Clin. Pharmacol., 2004, 9, 898-930.
- Chabner, B.A.; Longo, D.L. Cancer chemotherapy and biotherapy: Principles and practice; Lippincott Williams & Wilkins, 2011.
- Wang, Z.; Sun, H.; Yakisich, J.S. Overcoming the blood-brain barrier for chemotherapy: Limitations, challenges and rising problems. Anticancer. Agents Med. Chem., 2014, 14(8), 1085-1093. doi: 10.2174/18715206113139990029 PMID: 23092271
- El-Hussein, A.; Manoto, S.L.; Ombinda-Lemboumba, S.; Alrowaili, Z.A.; Mthunzi-Kufa, P. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer. Agents Med. Chem., 2021, 21(2), 149-161. doi: 10.2174/1871520620666200403144945 PMID: 32242788
- Li, X.; Zhang, C.T.; Ma, W.; Xie, X.; Huang, Q. Oridonin: A review of its pharmacology, pharmacokinetics and toxicity. Front. Pharmacol., 2021, 12645824 doi: 10.3389/fphar.2021.645824 PMID: 34295243
- Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410. doi: 10.1038/nrc3064 PMID: 21606941
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726. doi: 10.1038/nrc3599 PMID: 24060863
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792. doi: 10.3390/cancers6031769 PMID: 25198391
- Sun, T.M.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.X.; Xia, Y.N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364.
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61. PMID: 25838373
- Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell, 2015, 161(2), 205-214. doi: 10.1016/j.cell.2015.03.030 PMID: 25860605
- Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981. doi: 10.1158/0008-5472.CAN-16-2634 PMID: 28701486
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311. doi: 10.1016/S0140-6736(16)30958-8 PMID: 27574741
- Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25. PMID: 28782480
- Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95. doi: 10.1038/nrc2981 PMID: 21258394
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489. doi: 10.1038/nature10673 PMID: 22193102
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558. doi: 10.1126/science.1235122 PMID: 23539594
- Lee, J.; Xu, Y.; Zhang, T.; Cui, L.; Saidi, L.; Ye, Y. Secretion of misfolded cytosolic proteins from mammalian cells is independent of chaperone-mediated autophagy. J. Biol. Chem., 2018, 293(37), 14359-14370. doi: 10.1074/jbc.RA118.003660 PMID: 30072379
- Schneider, K.L.; Nyström, T.; Widlund, P.O. Studying spatial protein quality control, proteopathies, and aging using different model misfolding proteins in S. Cerevisiae. Front. Mol. Neurosci., 2018, 11, 249. doi: 10.3389/fnmol.2018.00249 PMID: 30083092
- Ciechanover, A.; Kwon, Y.T. Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Exp. Mol. Med., 2015, 47(3), e147-e147. doi: 10.1038/emm.2014.117 PMID: 25766616
- Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov., 2017, 16(2), 101-114. doi: 10.1038/nrd.2016.211 PMID: 27885283
- Dissmeyer, N.; Rivas, S.; Graciet, E. Life and death of proteins after protease cleavage: Protein degradation by the N-end rule pathway. New Phytol., 2018, 218(3), 929-935. doi: 10.1111/nph.14619 PMID: 28581033
- Wu, S-Y.; Lan, S-H.; Wu, S-R.; Chiu, Y-C.; Lin, X-Z.; Su, I-J.; Tsai, T-F.; Yen, C-J.; Lu, T-H.; Liang, F-W.; Li, C-Y.; Su, H-J.; Su, C-L.; Liu, H-S. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology, 2018, 68(1), 141-154. doi: 10.1002/hep.29781 PMID: 29328502
- Karlgren, M.; Simoff, I.; Keiser, M.; Oswald, S.; Artursson, P. CRISPR-Cas9: A new addition to the drug metabolism and disposition tool box. Drug Metab. Dispos., 2018, 46(11), 1776-1786. doi: 10.1124/dmd.118.082842 PMID: 30126863
- Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144. doi: 10.1016/j.pharmthera.2017.02.027 PMID: 28223226
- An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562. doi: 10.1016/j.ebiom.2018.09.005 PMID: 30224312
- Bao, S-M.; Hu, Q-H.; Yang, W-T.; Wang, Y.; Tong, Y-P.; Bao, W-D. Targeting epidermal growth factor receptor in non-small-cell-lung cancer: Current state and future perspective. Anticancer. Agents Med. Chem., 2019, 19(8), 984-991. doi: 10.2174/1871520619666190313161009 PMID: 30868964
- Paiva, S.L.; Crews, C.M. Targeted protein degradation: Elements of PROTAC design. Curr. Opin. Chem. Biol., 2019, 50, 111-119. doi: 10.1016/j.cbpa.2019.02.022 PMID: 31004963
- Burslem, G.M.; Crews, C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell, 2020, 181(1), 102-114. doi: 10.1016/j.cell.2019.11.031 PMID: 31955850
- Ding, Y.; Fei, Y.; Lu, B. Emerging new concepts of degrader technologies. Trends Pharmacol. Sci., 2020, 41(7), 464-474. doi: 10.1016/j.tips.2020.04.005 PMID: 32416934
- Wang, Y.; Jiang, X.; Feng, F.; Liu, W.; Sun, H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B, 2020, 10(2), 207-238. doi: 10.1016/j.apsb.2019.08.001 PMID: 32082969
- Martín-Acosta, P.; Xiao, X. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem., 2021, 210112993 doi: 10.1016/j.ejmech.2020.112993 PMID: 33189436
- Huang, X.; Dixit, V.M. Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res., 2016, 26(4), 484-498. doi: 10.1038/cr.2016.31 PMID: 27002218
- Schlesiger, S.; Toure, M.; Wilke, K.E.; Huck, B.R. Accelerating the discovery of next-generation small-molecule protein degraders. Aldrichim Acta, 2019, 52(2), 35-49.
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559. doi: 10.1073/pnas.141230798 PMID: 11438690
- Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358. doi: 10.1074/mcp.T300009-MCP200 PMID: 14525958
- Li, X.; Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol., 2020, 13(1), 50. doi: 10.1186/s13045-020-00885-3 PMID: 32404196
- Liu, J.; Chen, H.; Ma, L.; He, Z.; Wang, D.; Liu, Y.; Lin, Q.; Zhang, T.; Gray, N.; Kaniskan, H.U.; Jin, J.; Wei, W. Light-induced control of protein destruction by opto-PROTAC. Sci. Adv., 2020, 6(8)eaay5154 doi: 10.1126/sciadv.aay5154 PMID: 32128407
- Wade, M.; Li, Y-C.; Wahl, G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer, 2013, 13(2), 83-96. doi: 10.1038/nrc3430 PMID: 23303139
- Li, Y.; Yang, J.; Aguilar, A.; McEachern, D.; Przybranowski, S.; Liu, L.; Yang, C-Y.; Wang, M.; Han, X.; Wang, S. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem., 2019, 62(2), 448-466. doi: 10.1021/acs.jmedchem.8b00909 PMID: 30525597
- Yang, J.; Li, Y.; Aguilar, A.; Liu, Z.; Yang, C-Y.; Wang, S. Simple structural modifications converting a bona fide MDM2 PROTAC degrader into a molecular glue molecule: A cautionary tale in the design of PROTAC degraders. J. Med. Chem., 2019, 62(21), 9471-9487. doi: 10.1021/acs.jmedchem.9b00846 PMID: 31560543
- Wang, B.; Liu, J.; Tandon, I.; Wu, S.; Teng, P.; Liao, J.; Tang, W. Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. Eur. J. Med. Chem., 2021, 219113425 doi: 10.1016/j.ejmech.2021.113425 PMID: 33862513
- Doroshow, D.B.; Eder, J.P.; LoRusso, P.M. BET inhibitors: A novel epigenetic approach. Ann. Oncol., 2017, 28(8), 1776-1787. doi: 10.1093/annonc/mdx157 PMID: 28838216
- Stathis, A.; Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov., 2018, 8(1), 24-36. doi: 10.1158/2159-8290.CD-17-0605 PMID: 29263030
- Zhou, B.; Hu, J.; Xu, F.; Chen, Z.; Bai, L.; Fernandez-Salas, E.; Lin, M.; Liu, L.; Yang, C-Y.; Zhao, Y.; McEachern, D.; Przybranowski, S.; Wen, B.; Sun, D.; Wang, S. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J. Med. Chem., 2018, 61(2), 462-481. doi: 10.1021/acs.jmedchem.6b01816 PMID: 28339196
- Bai, L.; Zhou, B.; Yang, C-Y.; Ji, J.; McEachern, D.; Przybranowski, S.; Jiang, H.; Hu, J.; Xu, F.; Zhao, Y.; Liu, L.; Fernandez-Salas, E.; Xu, J.; Dou, Y.; Wen, B.; Sun, D.; Meagher, J.; Stuckey, J.; Hayes, D.F.; Li, S.; Ellis, M.J.; Wang, S. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res., 2017, 77(9), 2476-2487. doi: 10.1158/0008-5472.CAN-16-2622 PMID: 28209615
- Jiang, F.; Wei, Q.; Li, H.; Li, H.; Cui, Y.; Ma, Y.; Chen, H.; Cao, P.; Lu, T.; Chen, Y. Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorg. Med. Chem., 2020, 28(1)115181 doi: 10.1016/j.bmc.2019.115181 PMID: 31767403
- Carpenter, R.L.; Lo, H-W. STAT3 Target genes relevant to human cancers. Cancers (Basel), 2014, 6(2), 897-925. doi: 10.3390/cancers6020897 PMID: 24743777
- Chai, E.Z.P.; Shanmugam, M.K.; Arfuso, F.; Dharmarajan, A.; Wang, C.; Kumar, A.P.; Samy, R.P.; Lim, L.H.K.; Wang, L.; Goh, B.C.; Ahn, K.S.; Hui, K.M.; Sethi, G. Targeting transcription factor STAT3 for cancer prevention and therapy. Pharmacol. Ther., 2016, 162, 86-97. doi: 10.1016/j.pharmthera.2015.10.004 PMID: 26478441
- Zhou, H.; Bai, L.; Xu, R.; Zhao, Y.; Chen, J.; McEachern, D.; Chinnaswamy, K.; Wen, B.; Dai, L.; Kumar, P.; Yang, C-Y.; Liu, Z.; Wang, M.; Liu, L.; Meagher, J.L.; Yi, H.; Sun, D.; Stuckey, J.A.; Wang, S. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. J. Med. Chem., 2019, 62(24), 11280-11300. doi: 10.1021/acs.jmedchem.9b01530 PMID: 31747516
- Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Jiang, H.; Wen, B.; Kumar, P.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 2019, 36(5), 498-511.e17. doi: 10.1016/j.ccell.2019.10.002 PMID: 31715132
- Zhou, H.; Bai, L.; Xu, R.; McEachern, D.; Chinnaswamy, K.; Li, R.; Wen, B.; Wang, M.; Yang, C-Y.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. SD-91 as a potent and selective STAT3 degrader capable of achieving complete and long-lasting tumor regression. ACS Med. Chem. Lett., 2021, 12(6), 996-1004. doi: 10.1021/acsmedchemlett.1c00155 PMID: 34141084
- Bertoli, C.; Skotheim, J.M.; de Bruin, R.A.M. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 518-528. doi: 10.1038/nrm3629 PMID: 23877564
- Ishoey, M.; Chorn, S.; Singh, N.; Jaeger, M.G.; Brand, M.; Paulk, J.; Bauer, S.; Erb, M.A.; Parapatics, K.; Müller, A.C.; Bennett, K.L.; Ecker, G.F.; Bradner, J.E.; Winter, G.E. Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders. ACS Chem. Biol., 2018, 13(3), 553-560. doi: 10.1021/acschembio.7b00969 PMID: 29356495
- Sancho, M.; Leiva, D.; Lucendo, E.; Orzáez, M. Understanding MCL1: From cellular function and regulation to pharmacological inhibition. FEBS J., 2021. febs.16136. doi: 10.1111/febs.16136 PMID: 34310025
- Widden, H.; Placzek, W.J. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun. Biol., 2021, 4(1), 1029. doi: 10.1038/s42003-021-02564-6 PMID: 34475520
- Papatzimas, J.W.; Gorobets, E.; Maity, R.; Muniyat, M.I.; MacCallum, J.L.; Neri, P.; Bahlis, N.J.; Derksen, D.J. From inhibition to degradation: Targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J. Med. Chem., 2019, 62(11), 5522-5540. doi: 10.1021/acs.jmedchem.9b00455 PMID: 31117518
- Spillantini, M.G.; Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol., 2013, 12(6), 609-622. doi: 10.1016/S1474-4422(13)70090-5 PMID: 23684085
- Kovacs, G.G. Invited review: Neuropathology of tauopathies: Principles and practice. Neuropathol. Appl. Neurobiol., 2015, 41(1), 3-23. doi: 10.1111/nan.12208 PMID: 25495175
- Silva, M.C.; Ferguson, F.M.; Cai, Q.; Donovan, K.A.; Nandi, G.; Patnaik, D.; Zhang, T.; Huang, H.T.; Lucente, D.E.; Dickerson, B.C.; Mitchison, T.J.; Fischer, E.S.; Gray, N.S.; Haggarty, S.J. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife, 2019, 8, 8. doi: 10.7554/eLife.45457 PMID: 30907729
- Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31. doi: 10.1517/14728222.2011.648617 PMID: 22239438
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737. doi: 10.1038/s41416-019-0573-8 PMID: 31564718
- He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X. Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg. Med. Chem. Lett., 2020, 30(12)127167 doi: 10.1016/j.bmcl.2020.127167 PMID: 32317208
- Xie, S.; Sun, Y.; Liu, Y.; Li, X.; Li, X.; Zhong, W.; Zhan, F.; Zhu, J.; Yao, H.; Yang, D-H.; Chen, Z-S.; Xu, J.; Xu, S. Development of alectinib-based PROTACs as novel potent degraders of anaplastic lymphoma kinase (ALK). J. Med. Chem., 2021, 64(13), 9120-9140. doi: 10.1021/acs.jmedchem.1c00270 PMID: 34176264
- Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700. doi: 10.1038/nrc3580 PMID: 24060861
- Shaw, A.T.; Engelman, J.A. ALK in lung cancer: Past, present, and future. J. Clin. Oncol., 2013, 31(8), 1105-1111. doi: 10.1200/JCO.2012.44.5353 PMID: 23401436
- Lin, J.J.; Riely, G.J.; Shaw, A.T. Targeting ALK: Precision medicine takes on drug resistance. Cancer Discov., 2017, 7(2), 137-155. doi: 10.1158/2159-8290.CD-16-1123 PMID: 28122866
Supplementary files
