On Self-Similarity of Laminar Jets

Cover Page

Cite item

Full Text

Abstract

The problems of laminar jets that admit self-similar solutions are considered. A method for determining the self-similarity parameter is proposed based on the condition of existence of a solution to equations in self-similar variables under given boundary conditions with only a single self-similarity parameter. In problems of plane free and wall jets the self-similarity parameters are determined analytically. In the problem of a three-dimensional wall jet, the self-similarity parameter is determined using a neural network.

About the authors

A. M Gaifullin

Zhukovski Central Aerohydrodynamic Institute

Email: gaifullin@tsagi.ru
Zhukovsky, Russia

A. S Shcheglov

Zhukovski Central Aerohydrodynamic Institute

Email: shcheglov@phystech.edu
Zhukovsky, Russia

References

  1. Schlichting H. Laminare Strahlausbreitung // ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 1933. Jg. 13. No. 4. S. 260–263.
  2. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. 744 с.
  3. Bickley W.G. LXXIII. The plane jet // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1937. V. 23. No. 156. P. 727–731.
  4. Акатинов Н. И. Распространение плоской ламинарной струи вязкой жидкости вдоль твердой стенки // Тр. Ленинградского политех. ин-та. 1953. № 5. С. 24–31.
  5. Glauert M.B. The wall jet // Journal of Fluid Mechanics. 1956. V. 1. No. 6. P. 625–643.
  6. Бут И. И., Гайфуллин А. М., Жанк В. В. Дальнее поле трехмерной пристенной ламинарной струи // Изв. РАН. Механика жидкости и газа. 2021. № 6. С. 51–61.
  7. Gaifullin A.M., Shcheglov A.S. Self-Similarity of a Wall Jet with Swirl // Lobachevskii Journal of Mathematics. 2022. V. 43. No. 5. P. 1098–1103.
  8. Лойцянский Л. Г. Механика жидкости и газа. М.: Наука, 1978. 736 с.
  9. Raissi M., Perdikaris P., Karniadakis G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations // Journal of Computational Physics. 2019. V. 378. P. 686–707.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences