Investigation of Gas-Droplet Flow in Presence of Electrical Discharge
- Autores: Saveliev A.S.1
- 
							Afiliações: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
 
- Edição: Volume 49, Nº 5 (2023)
- Páginas: 480-487
- Seção: LOW TEMPERATURE PLASMA
- URL: https://filvestnik.nvsu.ru/0367-2921/article/view/668544
- DOI: https://doi.org/10.31857/S0367292123600231
- EDN: https://elibrary.ru/VFJEAA
- ID: 668544
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The mutual influence of electric discharge and air-droplet flow formed by a centrifugal nozzle when a conductive liquid (solution of sodium chloride in water) is supplied to it under pressure was investigated. Using the method of digital double microphotography with further computer processing of photographs, the main characteristics of the spray in the presence of an electric discharge and without it were obtained: the mean diameter, the Sauter mean diameter, the distribution of the velocity vector components by the droplet diameter and others. It is shown that the presence of liquid spray leads to a decrease in the effective value of the breakdown electric field strength. Also it was found that the energy release into the air-droplet flow leads to a change in the value of the Sauter mean diameter, and the presence of a high voltage in the measurement region leads to the acceleration of drops of a relatively small diameter.
Palavras-chave
Sobre autores
A. Saveliev
Joint Institute for High Temperatures, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: fisteh@mail.ru
				                					                																			                												                								125412, Moscow, Russia						
Bibliografia
- Zeleny J. // Phys. Rev. 1914. V. 3. P. 69.
- Panov V.A., Vasilyak L.M., Vetchinin S.P., Pecherkin V.Ya., Saveliev A.S. // Plasma Phys. Rep. 2018. V. 44 (9). P. 882.
- Panov V.A., Pecherkin V.Ya., Vasilyak L.M., and Vetchinin S.P. // Plasma Phys. Rep. 2021. V. 47 (6). P. 623.
- Burlica R., Shih K.-Y., Locke B.R. // Industrial Eng. Chem. Res. 2010. V. 49. P. 6342.
- Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press, 2008.
- Burlica R., Finney W.C., Locke B.R. // IEEE Trans. Ind. Appl. 2013. V. 49 (3). P. 1098.
- Tepper G., Kessick G., Pestov D. // J. Appl. Phys. 2007. V. 102. P. 11330.
- Савельев А.С. // Вестник ОИВТ РАН. 2019. Т. 2. С. 69.
- De Cock N., Massinon M., Lebeau F. // Proc. Internat. Advances in Pesticide Application, Oxford, United Kingdom, 2014. P. 122.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





