Temporal characteristics of shock-heated air radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of measuring the time spectrograms of shock-heated air radiation obtained on the STS-M and DDST-M shock tubes of the Institute of Mechanics (Moscow State University) using an integral method that records the time evolution of radiation passing through the measuring section of the shock tubes in narrow spectral ranges specially selected using monochromators. The measurements were performed for atomic lines and molecular bands in the wavelength range from vacuum ultraviolet to infrared radiation at an initial pressure before the shock wave of 0.25 Torr and shock wave velocities from 7.8 to 11.0 km/s. The obtained results are compared with the experimental data of other authors.

Full Text

Restricted Access

About the authors

N. G. Bykova

Lomonosov Moscow State University

Author for correspondence.
Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

P. V. Kozlov

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

I. E. Zabelinsky

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

G. Ya. Gerasimov

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

V. Yu. Levashov

Lomonosov Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

References

  1. Brandis A.M., Cruden B.A. // AIAA Paper. 2017. № 2017-1145. https://doi.org/10.2514/6.2017-1145
  2. McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // AIAA Paper. 2017. № 2015-3545. https://doi.org/10.2514/6.2015-3545
  3. M. Lino da Silva, R. Perreira, J. Vargas et al. // AIAA Paper. 2020. № 2020-0624. https://doi.org/10.2514/6.2020-0624
  4. Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 642. https://doi.org/10.1134/S1990793122040194
  5. Bykova N.G., Zabelinsky I.E., Kozlov P.V., Gerasimov G.Ya.,. Levashov V.Yu. // Russ. J. Phys. Chem. B. 2013. V. 17. P. 1152. https://doi.org/10.1134/S1990793123050184
  6. Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 23. No. 4. P. 1. http://chemphys.edu.ru/issues/2022-23-4/articles/1015/
  7. Zhao Y., Huang H. // Acta Astronaut. 2020. V. 169. P. 84. https://doi.org/10.1016/j.actaastro.2020.01.002
  8. Surzhikov S.T. // Russ. J. Phys. Chem. B. 2010. V. 4. P. 613. https://doi.org/10.1134/S1990793110040123
  9. Brandis A.M., Johnson C.O. // AIAA Paper. 2017. № 2014-2374. https://doi.org/10.2514/6.2014-2374
  10. Cruden B., Martinez R., Grinstead J., Olejniczak J. // AIAA Paper. 2017. № 2009-4240. https://doi.org/10.2514/6.2009-4240
  11. Brandis A.M., Johnston C.O., Cruden B.A., Prabhu D., Bose D. // J. Thermophys. Heat Trans. 2015. V. 29. P. 209. https://doi.org/10.2514/1.T4000
  12. Dufrene A., Holden M. // AIAA Paper. 2011. № 2011-626. https://doi.org/10.2514/6.2011-626
  13. McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // AIAA Paper. 2015. № 2015-3543. https://doi.org/10.2514/6.2015-3543
  14. Zalogin G.N., Kozlov P.V., Kuznetsova L.A. et al. // Tech. Phys. 2001. V. 46. P. 654. https://doi.org/10.1134/1.1379629
  15. Bykova N.G., Zabelinsky I.E., Ibragimova L.B. et al. // Russ. J. Phys. Chem. B. 2018. V. 12. P. 108. https://doi.org/10.1134/S1990793118010165
  16. Brandis A.M., Johnson C.O., Cruden B.A. // AIAA Paper. 2016. № 2016-3690. https://doi.org/10.2514/6.2016-3690
  17. Palumbo G., Craig R.A., Whiting E.W., Park C. // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 51. P. 207. https://doi.org/10.1016/S0022-4073(96)00138-0
  18. Zabelinsky I.E., Kozlov P.V., Akimov Yu.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. V. 977. https://doi.org/10.1134/S1990793121060117
  19. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Acta Astronaut. 2022. V. 194. P. 461. https://doi.org/10.1016/j.actaastro.2021.10.032
  20. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 652. https://doi.org/10.1134/S1990793121040199
  21. Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 883. https://doi.org/10.1134/S1990793122050049
  22. NIST Atomic Spectra Database. Ver. 5.12. Gaithersburg: NIST, 2024. https://doi.org/10.18434/T4W30F
  23. Kozlov P.V., Surzhikov S.T. // AIAA Paper. 2017. № 2017-0157. https://doi.org/10.2514/6.2017-0157
  24. Grinstead J.H., Wilder M.C., Olejniczak J. et al. // AIAA Paper. 2008. № 2008-1244. https://doi.org/10.2514/6.2008-1244

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Panoramic spectrum of air radiation at shock wave velocity VSW = 10 km/s and initial pressure p0 = 0.25 Torr.

Download (1MB)
3. Fig. 2. Time dependence of the radiation power of nitrogen atoms at wavelength l = 149 nm in shock-heated air at p0 = 0.25 Torr and shock wave velocities VSW = 10.4 (1), 10.0 (2), and 8.8 (3) km/s.

Download (366KB)
4. Fig. 3. Time dependence of the radiation power of NO molecules at wavelength l = 213 nm in shock-heated air at p0 = 0.25 Torr and shock wave velocities VSW = 10.9 (1), 10.6 (2), 10.0 (3), and 9.1 (4) km/s.

Download (431KB)
5. Fig. 4. Time dependence of the radiation power of N2 molecules at a wavelength of l = 313 nm (1) and N2+ molecular ions at a wavelength of l = 391 nm (2) in shock-heated air at p0 = 0.25 Torr and a shock wave velocity of VSW = 9.62 km/s.

Download (350KB)
6. Fig. 5. Time dependence of the radiation power of nitrogen atoms at a wavelength of l = 818 nm in shock-heated air at p0 = 0.25 Torr and shock wave velocities of VSW = 10.8 (1), 10.1 (2), and 9.1 (3) km/s.

Download (384KB)
7. Fig. 6. Time dependence of the radiation power of nitrogen atoms at a wavelength of l = 822 nm in shock-heated air at p0 = 0.25 Torr and shock wave velocities VSW = 10.0 (1), 9.3 (2) and 8.7 (3) km/s.

Download (420KB)
8. Fig. 7. Time dependence of the radiation power of N2+(1–) at a wavelength of l = 391 nm, measured in the shock tubes DDST-M at VSW = 10.0 km/s and p0 = 0.25 Torr (1) and EAST at VSW = 9.9 km/s and p0 = 0.3 Torr (2).

Download (418KB)

Copyright (c) 2025 Russian Academy of Sciences