Fluorescent Photoswitchable Systems
- Авторлар: Budyka М.F.1
- 
							Мекемелер: 
							- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
 
- Шығарылым: Том 44, № 6 (2025)
- Беттер: 3-29
- Бөлім: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://filvestnik.nvsu.ru/0207-401X/article/view/686497
- DOI: https://doi.org/10.31857/S0207401X25060018
- ID: 686497
Дәйексөз келтіру
Аннотация
Fluorescent photoswitchable systems (FPSS) are organic molecular and organic-inorganic hybrid nanoscale systems that combine the properties of photochromes and fluorophores, i.e. the ability to change their fluorescent properties, intensity and/or emission spectrum under the action of light. The structure and mechanisms of action of FPSS of different types are considered, examples of application of FPSS in super-resolution microscopy, for visualisation of biological and inorganic nano-objects, recording of optical information, for anti-counterfeiting, as photonic molecular logic gates are given.
Толық мәтін
 
												
	                        Авторлар туралы
М. Budyka
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: budyka@icp.ac.ru
				                					                																			                												                	Ресей, 							Chernogolovka						
Әдебиет тізімі
- Bouas-Laurent H., Dürr H. // Org. Photochrom., Pure Appl. Chem. 2001. V. 73. P. 639. https://doi.org/10.1351/pac200173040639
- Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Pianowski Z.L. Wiley-VCH GmbH, 2022. https://doi.org/10.1002/9783527827626
- Braslavsky S.E. // Pure Appl. Chem. 2007. V. 79. P. 293. https://doi.org/10.1351/pac200779030293
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. N.Y.: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
- Parthenopoulos D.A., Rentzepis P.M. // Science. 1989. V. 245. P. 843. https://doi.org/10.1126/science.245.4920.843
- Fukaminato T., Doi T., Tamaoki N. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4984. https://doi.org/10.1021/ja110686t
- Dvornikov A.S., Walker P., Rentzepis P.M. // J. Phys. Chem. A. 2009. V. 113. P. 13633. https://doi.org/10.1021/jp905655z
- Shirinyan V.Z., Lonshakov D.V., Lvov A.G., Krayushkin M.M. // Uspekhi Khimii. 2013. V. 82. P. 511. https://doi.org/10.1070/RC2013v082n06ABEH004339
- Olesinska-Monch M., Deo C. // Chem. Commun. 2023. V. 59. P. 660. https://doi.org/10.1039/d2cc05870g
- Nevskyi O., Sysoiev D., Dreier J. et al. // Small. 2018. V. 14. P. 1703333. https://doi.org/10.1002/smll.201703333
- Biteen J., Willets K.A. // Chem. Rev. 2017. V. 117. P. 7241. https://doi.org/10.1021/acs.chemrev.7b00242
- Chen T., Dong B., Chen K. et al. // Ibid. P. 7510. https://doi.org/10.1021/acs.chemrev.6b00673
- Irie M., Fukaminato T., Matsuda K., Kobatake S. // Ibid. 2014. V. 114. P. 12174. https://doi.org/10.1021/cr500249p
- Kim D., Park S.Y. // Adv. Optical Mater. 2018. P. 1800678. https://doi.org/10.1002/adom.201800678
- Budyka M.F. // Uspekhi Khimii. 2017. V. 86. P. 181. https://doi.org/10.1070/RCR4657
- Erbas-Cakmak S., Kolemen S., Sedgwick A.C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228. https://doi.org/10.1039/c7cs00491e
- Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695. https://doi.org/10.1016/j.ccr.2020.213695
- Mockl L., Lamb D.C., Brauchle C. // Angew. Chem. Int. Ed. 2014. V. 53. P. 13972. https://doi.org/10.1002/anie.201410265
- Blom H., Widengren J. // Chem. Rev. 2017. V. 117. P. 7377. https://doi.org/10.1021/acs.chemrev.6b00653
- von Diezmann L., Shechtman Y., Moerner W.E. // Ibid. P. 7244. https://doi.org/10.1021/acs.chemrev.6b00629
- Deschout H., Lukes T., Sharipov A. et al. // Nat. Commun. 2016. V. 7. P. 13693. https://doi.org/10.1038/ncomms13693
- Prakash K., Diederich B., Heintzmann R., Schermelleh L. // Phil. Trans. R. Soc. A. 2022. V. 380. P. 20210110. https://doi.org/10.1098/rsta.2021.0110
- Balzarotti F., Eilers Y., Gwosch K.C. et al. // Science. 2017. V. 355. P. 606. https://doi.org/10.1126/science.aak9913
- Schmidt R., Weihs T., Wurm C.A. et al. // Nat. Commun. 2021. V. 12. P. 1478. https://doi.org/10.1038/s41467-021-21652-z
- Hauser M., Wojcik M., Kim D. et al. // Chem. Rev. 2017. V. 117. P. 7428. https://doi.org/10.1021/acs.chemrev.6b00604
- Roubinet B., Weber M., Shojaei H. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6611. https://doi.org/10.1021/jacs.7b00274
- Irie M., Morimoto M. // Bull. Chem. Soc. Jpn. 2018. V. 91. P. 237. https://doi.org/10.1246/bcsj.20170365
- Wu Y., Zhu Y., Yao C. et al. // J. Mater. Chem. C. 2023. V. 11. P. 15393. https://doi.org/10.1039/d3tc02383d
- Heilemann M., Dedecker P., Hofkens J., Sauer M. // Laser Photo. Rev. 2009. V. 3. P. 180. https://doi.org/10.1002/lpor.200810043
- Fukaminato T., Ishida S., Metivier R. // NPG Asia Mater. 2018. V. 10. P. 859. https://doi.org/10.1038/s41427-018-0075-9
- Zhong W., Shang L. // Chem. Sci. 2024. V. 15. P. 6218. https://doi.org/10.1039/d4sc00114a
- Huang F., Anslyn E.V. // Chem. Rev. 2015. V. 115. P. 6999. https://doi.org/10.1021/acs.chemrev.5b00352
- Furstenberg A., Heilemann M. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 14919. https://doi.org/10.1039/c3cp52289j
- Kortekaas L., Browne W.R. // Chem. Soc. Rev. 2019. V. 48. P. 3406.https://doi.org/10.1039/c9cs00203k
- Hu D., Tian Z., Wu W., Wan W., Li A.D.Q. // J. Am. Chem. Soc. 2008. V. 130. P. 15279. https://doi.org/10.1021/ja805948u
- Mandal M., Banik D., Karak A., Manna S.K., Mahapatra A.K. // ACS Omega. 2022. V. 7. P. 36988. https://doi.org/10.1021/acsomega.2c04969
- Irie M. // Chem. Rev. 2000. V. 100. P. 1685. https://doi.org/10.1021/cr980069d
- Lvov A.G., Khusniyarov M.M., Shirinian V.Z. // J. Photochem. Photobiol. C: Photochem. Rev. 2018. V. 36. P. 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002
- Matsuda K., Irie M. // J. Photochem. Photobiol., C. 2004. V. 5. P. 169. https://doi.org/10.1016/j.jphotochemrev.2004.07.003
- Li Z., Zeng X., Gao C. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215451. https://doi.org/10.1016/j.ccr.2023.215451
- Fukaminato T. // J. Photochem. Photobiol., C. 2011. V. 12. P. 177. https://doi.org/10.1016/j.jphotochemrev.2011.08.006
- Pang S.C., Hyun H., Lee S. et al. // Chem. Commun. 2012. V. 48. P. 3745. https://doi.org/10.1039/C2CC30738C
- Jeong Y.-C., Yang S.I., Ahn K.-H., Kim E. // Ibid. 2005. P. 2503. https://doi.org/10.1039/B501324K
- Jeong Y.-C., Yang S.I., Kim E., Ahn K.-H. // Tetrahedron. 2006. V. 62. P. 5855. https://doi.org/10.1016/j.tet.2006.04.029
- Jeong Y.-C., Park D.G., Lee I.S., Yang S.I., Ahn K.-H. // J. Mater. Chem. 2009. V. 19. P. 97. https://doi.org/10.1039/b814040e
- Taguchi M., Nakagawa T., Nakashima T., Kawai T. // Ibid. 2011. V. 21. P. 17425. https://doi.org/10.1039/c1jm12993g
- Kashihara R., Morimoto M., Ito S., Miyasaka H., Irie M. // J. Am. Chem. Soc. 2017. V. 139. P. 16498. https://doi.org/10.1021/jacs.7b10697
- Takagi Y., Morimoto M., Kashihara R. et al. // Tetrahedron. 2017. V. 73. P. 4918. https://doi.org/10.1016/j.tet.2017.03.040
- Nevskyi O., Sysoiev D., Oppermann A., Huhn T., Woll D. // Angew. Chem. Int. Ed. 2016. V. 55. P. 12698. https://doi.org/10.1002/anie.201606791
- Roubinet B., Bossi M.L., Alt P. et al. // Ibid. P. 15429. https://doi.org/10.1002/anie.201607940
- Uno K., Bossi M.L., Belov V.N., Irie M., Hell S.W. // Chem. Commun. 2020. V. 56. P. 2198. https://doi.org/10.1039/c9cc09390g
- Nakagawa T., Miyasaka Y., Yokoyama Y. // Ibid. 2018. V. 54. P. 3207. https://doi.org/10.1039/c8cc00566d
- Andresen M., Wahl M.C., Stiel A.C. et al. // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 13070. https://doi.org/10.1073/pnas.0502772102
- Grotjohann T., Testa I., Reuss M. et al. // eLife. 2012. V. 1. e00248. https://doi.org/10.7554/eLife.00248
- Grotjohann T., Testa I., Leutenegger M. et al. // Nature. 2011. V. 478. P. 204. https://doi.org/10.1038/nature10497
- Liu G., Leng J., Zhou Q. et al. // Dyes Pigm. 2022. V. 203. P. 110361. https://doi.org/10.1016/j.dyepig.2022.110361
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // Russ. Nanotechnol. 2012. V. 7. No. 5–6. P. 89. https://doi.org/10.1134/S1995078012030032
- de Silva A.P., Uchiyama S. // Nat. Nanotechnol. 2007. V. 2. P. 399. https://doi.org/10.1038/nnano.2007.188
- Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481. https://doi.org/10.1021/cr068403q
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // High Energy Chem. 2012. V. 46. P. 369. https://doi.org/10.1134/S0018143912040054
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218. https://doi.org/10.1002/slct.202004721
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta, Part A. 2022. V. 267. P. 120565. https://doi.org/10.1016/j.saa.2021.120565
- Budyka M.F., Fedulova J.A., Gavrishova T.N. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137. https://doi.org/10.1039/d2cp02865d
- Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectrochim. Acta, Part A. 2024. V. 320. P. 124666. https://doi.org/10.1016/j.saa.2024.124666
- Budyka M.F., Li V.M., Gavrishova T.N. // High Energy Chem. 2025. V. 59. P. 22. https://doi.org/10.1134/S0018143924701431
- Budyka M.F. // High Energy Chem. 2007. V. 41. P. 213. https://doi.org/10.1134/S0018143907030058
- Lord S.J., Conley N.R., Lee H.D. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 9204. https://doi.org/10.1021/ja802883k
- Homan R.A., Lapek J.D., Woo C.M. et al. // Nat. Rev. Methods Primers. 2024. V. 4. P. 30. https://doi.org/10.1038/s43586-024-00308-4
- Lord S.J., Lee H.D., Samuel R. et al. // J. Phys. Chem. B. 2010. V. 114. P. 14157. https://doi.org/10.1021/jp907080r
- Belov V.N., Wurm C.A., Boyarskiy V.P., Jakobs S., Hell S.W. // Angew. Chem. Int. Ed. 2010. V. 49. P. 3520. https://doi.org/10.1002/anie.201000150
- Hauke S., von Appen A., Quidwai T., Ries J., Wombacher R. // Chem. Sci. 2017. V. 8. P. 559. https://doi.org/10.1039/c6sc02088g
- Maurel D., Banala S., Laroche T., Johnsson K. // ACS Chem. Biol. 2010. V. 5. P. 507. https://doi.org/10.1021/cb1000229
- Gong Q., Zhang X., Li W. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21992. https://doi.org/10.1021/jacs.2c08947
- Lincoln R., Bossi M.L., Remmel M. et al. // Nat. Chem. 2022. V. 14. P. 1013. https://doi.org/10.1038/s41557-022-00995-0
- Vaughan J.C., Jia S., Zhuang X.W. // Nat. Methods. 2012. V. 9. P. 1181. https://doi.org/10.1038/nmeth.2214
- Go G., Jeong U., Park H., Go S., Kim D. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202405246. https://doi.org/10.1002/anie.202405246
- Efros A.L., Nesbitt D.J. // Nat. Nanotechn. 2016. V. 11. P. 661. https://doi.org/10.1038/nnano.2016.140
- Shi J., Sun W., Utzat H. et al. // Ibid. 2021. V. 16. P. 1355. https://doi.org/10.1038/s41565-021-01016-w
- Du J., Yang Z., Lin H., Poelman D. // Respons. Mater. 2024. V. 2. P. e20240004. https://doi.org/10.1002/rpm.20240004
- Knibbe H., Rehm D., Weller A. // Ber. Bunsen-Ges. Phys. Chem. 1969. V. 73. P. 839. https://doi.org/10.1002/bbpc.19690730819
- Fukaminato T., Tanaka M., Doi T. et al. // Photochem. Photobiol. Sci. 2010. V. 9. P. 181. https://doi.org/10.1039/b9pp00131j
- Braslavsky S.E., Fron E., Rodriguez H.B. et al. // Ibid. 2008. V. 7. P. 1444. https://doi.org/10.1039/b810620g
- Irie M., Fukaminato T., Sasaki T., Tamai N., Kawai T. // Nature. 2002. V. 420. P. 759. https://doi.org/10.1038/420759a
- Fukaminato T., Sasaki T., Kawai T., Tamai N., Irie M. // J. Am. Chem. Soc. 2004. V. 126. P. 14843. https://doi.org/10.1021/ja047169n
- Galimov D.I., Tuktarov A.R., Sabirov D.Sh., Khuzin A.A., Dzhemilev U.M. // J. Photochem. Photobiol. A. 2019. V. 375. P. 64. https://doi.org/10.1016/j.jphotochem.2019.02.017
- Jeong J., Yun E., Choi Y. et al. // Chem. Commun. 2011. V. 47. P. 10668. https://doi.org/10.1039/c1cc14041h
- Budyka M.F. // Org. Photonics Photovolt. 2015. V. 3. P. 101. https://doi.org/10.1515/oph-2015-0001
- Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173. https://doi.org/10.1021/ar200214k
- Ordronneau L., Aubert V., Metivier R. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 2599. https://doi.org/10.1039/c2cp23333a
- Ordronneau L., Boixel J., Aubert V. et al. // Org. Biomol. Chem. 2014. V. 12. P. 979. https://doi.org/10.1039/c3ob42119h
- Budyka M.F., Li V.M. // ChemPhysChem. 2017. V. 18. P. 260. https://doi.org/10.1002/cphc.201600722
- Budyka M.F., Lee V.M., Gavrishova T.N. // J. Photochem. Photobiol. A. 2014. V. 279. P. 59. https://doi.org/10.1016/j.jphotochem.2014.01.004
- Balzani V., Cola L., Prodi L., Scandola F. // Pure Appl. Chem. 1990. V. 62. P. 1457. https://doi.org/10.1351/pac199062081457
- Zhu F., Hou X.-F., Wang J. et al. // Asian J. Org. Chem. 2024. P. e202400385. https://doi.org/10.1002/ajoc.202400385
- Andréasson J., Straight S.D., Kodis G. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 16259. https://doi.org/10.1021/ja0654579
- Andreasson J., Pischel U., Straight S.D. et al. // Ibid. 2011. V. 133. P. 11641. https://doi.org/10.1021/ja203456h
- Andreasson J., Straight S.D., Bandyopadhyay S. et al. // Angew. Chem. Int. Ed. 2007. V. 46. P. 958. https://doi.org/10.1002/anie.200603856
- Andreasson J., Straight S.D., Moore T.A., Moore A.L., Gust D. // Chem. Eur. J. 2009. V. 15. P. 3936. https://doi.org/10.1002/chem.200900043
- Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855. https://doi.org/10.1039/C5RA06628J
- Doddi S., Narayanaswamy K., Ramakrishna B., Singh S.P., Bangal P.R. // J. Fluoresc. 2016. V. 26. P. 1939. https://doi.org/10.1007/s10895-016-1886-0
- Yan Q., Xu J., Luo M. et al. // Dyes Pigm. 2023. V. 214. P. 111231. https://doi.org/10.1016/j.dyepig.2023.111231
- Hu Z., Zhang Q., Xue M., Sheng Q., Liu Y. // Opt. Mater. 2008. V. 30. P. 851. https://doi.org/10.1016/j.optmat.2007.03.012
- Yao Z., Wang X., Liu J. et al. // Chem. Commun. 2023. V. 59. P. 2469. https://doi.org/10.1039/d2cc06707b
- Naren G., Hsu C.W., Li S. et al. // Nat. Commun. 2019. V. 10. P. 3996. https://doi.org/10.1038/s41467-019-11885-4
- Yildiz I., Deniz E., Raymo F. // Chem. Soc. Rev. 2009. V. 38. P. 1859. https://doi.org/10.1039/b804151m
- Credi A. // New J. Chem. 2012. V. 36. P. 1925. https://doi.org/10.1039/c2nj40335h
- Chashchikhin O.V., Budyka M.F. // High Energy Chem. 2017. V. 51. P. 449. https://doi.org/10.1134/S0018143918010022
- Zhao J.-L., Li M.-H., Cheng Y.-M. et al. // Coord. Chem. Rev. 2023. V. 475. P. 214918. https://doi.org/10.1016/j.ccr.2022.214918
- Budyka M.F., Chashchikhin O.V., Nikulin P.A. // Russ. Nanotechnol. 2016. V. 11. N. 1–2. P. 67. https://doi.org/10.1134/S199507801601002X
- Chashchikhin O.V., Budyka M.F., Gavrishova T.N., Li V.M. // RSC Adv. 2017. V. 7. P. 2236. https://doi.org/10.1039/C6RA27577J
- Liu M., Tang G., Liu Y., Jiang F. // J. Phys. Chem. Lett. 2024. V. 15. P. 1975. https://doi.org/10.1021/acs.jpclett.3c03413
- Diaz S., Menendez G., Etchehon M. et al. // ACS Nano. 2011. V. 5. P. 2795. https://doi.org/10.1021/nn103243c
- Zhu L., Zhu M.-Q., Hurst J.K., Li A.D.Q. // J. Am. Chem. Soc. 2005. V. 127. P. 8968. https://doi.org/10.1021/ja0423421
- Han G., Mokari T., Ajo-Franklin C., Cohen B.E. // Ibid. 2008. V. 130. P. 15811. https://doi.org/10.1021/ja804948s
- Diaz S.A., Giordano L., Jovin T.M., Jares-Erijman E.A. // Nano Lett. 2012. V. 12. P. 3537. https://doi.org/10.1021/nl301093s
- Budyka M.F., Nikulin P.A., Gavrishova T.N., Chashchikhin O.V. // ChemPhotoChem. 2021. V. 5. P. 582. https://doi.org/10.1002/cptc.202000285
- Budyka M.F., Nikulin P.A. // High Energy Chem. 2021. V. 55. P. 436. https://doi.org/10.31857/S0023119321060036
- Oneil C.E., Jackson J.M., Shim S.-H., Soper S.A. // Anal. Chem. 2016. V. 88. P. 3686. https://doi.org/10.1021/acs.analchem.5b04472
- Zhang Y., Lucas J.M., Song P. et al. // Proc. Natl. Acad. Sci. U.S.A. 2015. V. 112. P. 8959. https://doi.org/10.1073/pnas.1502005112
- Andoy N.M., Zhou X., Choudhary E. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 1845. https://doi.org/10.1021/ja309948y
- Chen X., Hou X.-F., Chen X.-M., Li Q. // Nat. Commun. 2024. V. 15. P. 5401. https://doi.org/10.1038/s41467-024-49670-7
- Wang L., Zhong W., Gao W., Liu W., Shang L. // Chem. Eng. J. 2024. V. 479. P. 147490. https://doi.org/10.1016/j.cej.2023.147490
- https://www.sciencedirect.com
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді

























