Ion confinement efficiency in a complex plasma of glow discharge
- Авторлар: Polyakov D.N.1, Shumova V.V.1,2, Vasilyak L.M.1
- 
							Мекемелер: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
- Semenov Institute of Chemical Physics, Russian Academy of Sciences
 
- Шығарылым: Том 43, № 8 (2024)
- Беттер: 109-115
- Бөлім: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ
- URL: https://filvestnik.nvsu.ru/0207-401X/article/view/681890
- DOI: https://doi.org/10.31857/S0207401X24080127
- ID: 681890
Дәйексөз келтіру
Аннотация
The parameters of the plasma of a low-pressure glow discharge in neon with microparticles are determined numerically, at which regions with equal values of the ion confinement efficiency in the cloud of microparticles are realized. It is noted that such features are characteristic of dissipative synergetic systems controlled by feedback. Simulation of a complex glow discharge plasma in neon with microparticles showed that feedback in the plasma is realized through the source of the main losses of its energy a cloud of microparticles. Controlling the discharge parameters by changing the concentration of microparticles in the cloud makes it possible to control the concentration of ions in the plasma.
Толық мәтін
 
												
	                        Авторлар туралы
D. Polyakov
Joint Institute for High Temperatures, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: cryolab@ihed.ras.ru
				                					                																			                												                	Ресей, 							Moscow						
V. Shumova
Joint Institute for High Temperatures, Russian Academy of Sciences; Semenov Institute of Chemical Physics, Russian Academy of Sciences
														Email: cryolab@ihed.ras.ru
				                					                																			                												                	Ресей, 							Moscow; Moscow						
L. Vasilyak
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: cryolab@ihed.ras.ru
				                					                																			                												                	Ресей, 							Moscow						
Әдебиет тізімі
- I. Adamovich, S. Agarwal, E. Ahedo et al., J. Phys. D: Appl. Phys. 55, 373001 (2022). https://doi.org/10.1088/1361-6463/ac5e1c
- F. Schlichting and H. Kersten, EPJ Techn. Instrum. 10, 19 (2023). https://doi.org/10.1140/epjti/s40485-023-00106-4
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Sources Sci. Technol. 30, 07LT01 (2021). https://doi.org/10.1088/1361-6595/ac0a46
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, J. Appl. Phys. 128, 053301 (2020). https://doi.org/10.1063/5.0014944
- J. Beckers, J. Berndt, D. Block et al., Phys. Plasmas 30, 120601 (2023). https://doi.org/10.1063/5.0168088
- M.Y. Pustylnik, A.A. Pikalev, A.V. Zobnin, et al., Contribut. Plasma Phys. 61 (10), e202100126 (2021). https://doi.org/10.1002/ctpp.202100126
- G.V. Golubkov, M.I. Manzhelii, A.A. Berlin, A.A. Lushnikov, and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 725 (2018). https://doi.org/10.1134/S1990793118040061
- G.V. Golubkov, N.V. Ardelyan, V.L. Bychkov, and K.V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 755 (2018). https://doi.org/10.1134/S1990793118040073
- Y. Chengxun, L. Zhijian, V. L. Bychkov et al., Russ. J. Phys. Chem. B 16(5), 955 (2022). https://doi.org/10.1134/S1990793122050189
- M.G. Golubkov, A.V. Suvorova, A.V. Dmitriev, and G.V. Golubkov, Russ. J. Phys. Chem. B 14, 873 (2020). https://doi.org/10.1134/S1990793120050206
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Russ. J. Phys. Chem. B 17 (5), 1241 (2023). https://doi.org/10.1134/S1990793123050263
- D.N. Polyakov, L.M. Vasilyak, and V.V. Shumova, Surf. Eng. Appl. Electrochem. 51, 143 (2015). https://doi.org/10.3103/S106837551502012X
- Y. Huttel, Gas-phase synthesis of nanoparticles. – John Wiley & Sons, Weinheim 2017. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527698417
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 14 (6), 959 (2020). https://doi.org/10.1134/S1990793120060275
- V.N. Mikhalkin, S.I. Sumskoi, A.M. Tereza et al. Russ. J. Phys. Chem. B 16 (4), 629 (2022). https://doi.org/10.1134/S1990793122040261
- V.V. Leschevich, V.V. Martynenko, O.G. Penyazkov, K.L. Sevrouk, and S.I. Shabunya, Shock Waves 26, 657 (2016). https://doi.org/10.1007/s00193-016-0665-9
- G.L. Agafonov, and A.M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015). https://doi.org/10.1134/S1990793115010145
- S.P. Medvedev, B.E. Gelfand, S.V. Khomik, and G.L. Agafonov, J. Engineer. Phys. and Thermophys. 83, 1170 (2010). https://doi.org/10.1007/s10891-010-0440-1
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 17 (4), 986 (2023). https://doi.org/10.1134/S1990793123040280
- L.M. Vasilyak, S.P. Vetchinin, D.N. Polyakov, and V.E. Fortov, J. Exp. Theor. Phys. 94 (3), 521 (2002). https://doi.org/10.1134/1.1469151
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Sources Sci. Technol. 31, 074001 (2022). https://doi.org/10.1088/1361-6595/ac7c36
- W.M. Farrell, J.E. Wahlund, M. Morooka et al., J. Geophys. Res. Planets 122, 729 (2017). https://doi.org/10.1002/2016JE005235
- E.R. Williams, Atmos. Res. 91, 140 (2009). https://doi.org/10.1016/j.atmosres.2008.05.018
- N.V. Ardelyan, V.L. Bychkov, G.V. Golubkov, and K.V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 749 (2018). https://doi.org/10.1134/S1990793118040036
- A.V. Kostrov, Plasma Phys. Rep. 46 (4), 443 (2020). https://doi.org/10.1134/S1063780X20040066
- R. Tian, Y. Liang, S. Hao, et al., Plasma Sci. Technol. 25, 095401 (2023). https://doi.org/10.1088/2058-6272/acc44a
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, IEEE Trans. Plasma Sci. 42, 2684 (2014). https://doi.org/10.1109/TPS.2014.2311584
- R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008). https://doi.org/10.1039/B802322K
- G.J.M. Hagelaar, and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005). http://dx.doi.org/10.1088/0963-0252/14/4/011
- L.C. Pitchford, J. Phys. D: Appl. Phys. 46, 330301 (2013). https://iopscience.iop.org/article/10.1088/0022-3727/ 46/33/330301
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 15 (4), 691 (2021). https://doi.org/10.1134/S1990793121040242
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 14 (4), 666 (2020). https://doi.org/10.1134/S1990793120040223
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Phys. Rep. 43 (3), 397 (2017). https://doi.org/10.1134/S1063780X17030096
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді

