Euler Arches and Duffing Springs of a Few Nanometers in Size
- Autores: Avetisov V.A.1,2, Astakhov A.M.1, Valov A.|.1, Markina A.A.1, Muratov A.D.1,2, Petrovsky V.S.1,2, Frolkina M.A.1,2
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Design Center for Molecular Machines
 
- Edição: Volume 42, Nº 6 (2023)
- Páginas: 21-39
- Seção: К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ АКАДЕМИКА В.И. ГОЛЬДАНСКОГО
- URL: https://filvestnik.nvsu.ru/0207-401X/article/view/674858
- DOI: https://doi.org/10.31857/S0207401X2306002X
- EDN: https://elibrary.ru/UGTCJZ
- ID: 674858
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The molecular dynamics of a rod-like oligomer of N-isopropylmethacrylamide and helical oligomers of pyridine-furan several nanometers in size are studied by full-atomic computer simulation. It is shown that, under compression and tension, the dynamics of the oligomers are similar to the dynamics of classical bistable constructions such as Euler arches and Duffing oscillators. The critical values of power loads at which the dynamic states of oligomers bifurcate and the dynamics of oligomers become bistable are determined. It is shown that in the region of bistability oligomers can switch to the regime of spontaneous vibrations activated by thermal fluctuations of the environment at room temperature. For the regime of spontaneous vibrations, the effect of stochastic resonance is demonstrated. The possibility of using bistable oligomers for the detection of single organic molecules in solutions is discussed.
Palavras-chave
Sobre autores
V. Avetisov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
														Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
A. Astakhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia						
A. Valov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia						
A. Markina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia						
A. Muratov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
														Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
V. Petrovsky
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
														Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
M. Frolkina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
							Autor responsável pela correspondência
							Email: avetisov@chph.ras.ru
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
Bibliografia
- Peschot A. // Micromachines. 2015. V. 6. № 8. P. 1046.
- Dutreix C., Avriller R., Lounis B. et al. // Phys. Rev. Res. 2020. V. 2. № 2. P. 023268.
- Benda L., Doistau B., Rossi-Gendron C. et al. // Commun. Chem. 2019. V. 2. № 1. P. 1.
- Erbas-Cakmak S., Kolemen S., Sedgwick A. C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228.
- Varghese S., Elemans J. A. A. W., Rowan A. E. et al. // Chem. Sci. 2015. V. 6. P. 6050.
- Shu T., Shen Q., Zhang X. et al. // Analyst. 2020. V. 145. № 17. P. 5713.
- Lemme M.C., Wagner S., Lee K. et al. // Research. 2020. V. 2020. P. 1.
- Zhang L., Marcos V., Leigh D.A. // PNAS. 2018. V. 115. № 38. P. 9397.
- Shi Z.-T., Zhang Q., Tian H. et al. // Adv. Intelligent Systems. 2020. V. 2. № 5. P. 1900169.
- Aprahamian I. // ACS Central Sci. 2020. V. 6. № 3. P. 347.
- Nicoli F., Paltrinieri E., Tranfić M. // Coord. Chem. Rev. 2021. V. 428. P. 213589.
- Evans D.J., Searles D.J. // Adv. Phys. 2002. V. 51. № 7. P. 1529.
- Seifert U. // Rep. Prog. Phys. 2012. V. 75. № 12. P.126001.
- Horowitz J.M., Gingrich T.R. // Nat. Phys. 2020. V. 16. № 1. P. 15.
- Ciliberto S. // Phys. Rev. X. 2017. V. 7. P. 021051.
- Wang G.M., Sevick E.M., Mittag E. et al. //Phys. Rev. Lett. 2002. V. 89. № 5. P. 050601.
- Jop P., Petrosyan A., Ciliberto S. // Europhys. Lett. 2008. V. 81. № 5. P. 50005.
- Vroylandt H., Esposito M., Verley G. // Phys. Rev. Lett. 2020. V. 124. № 25. P. 250603.
- Аветисов В.А., Гольданский В.И. // УФН. 1996. Т. 166. № 8. С. 873.
- Avetisov V.A., Goldanskii V.I. // PNAS. 1996. V. 93. P. 11 435.
- Аветисов В.А. Гольданский В.И. // Хим. физика. 1997. Т. 16. № 8. С. 59.
- Аветисов В.А. // Хим. физика. 2003. Т. 22. № 2. С. 16.
- Arnold V.I. / Catastrophe Theory. Berlin-Heidelberg: Springer, 1984.
- Poston T., Stewart I. Catastrophe theory and its applications. Mineola, N.Y.: Dover Publication, 1996.
- Duffing G. Erzwungene schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg № 41–42. F. Vieweg & Sohn, 1918.
- Chaos / Eds. Korsch H.J., Jodl H.-J., Hartmann T. Berlin–Heidelberg: Springer, 2008. P. 157.
- Kramers H.A. // Physica. 1940. V. 7. № 4. P. 284.
- Benzi R., Sutera A., Vulpiani A. // J. Phys. A: Math. Gen. 1981. V. 14. № 11. P. L453.
- Benzi R., Parisi G., Sutera A. et al. // Tellus. 1982. V. 34. № 1. P. 10.
- Benzi R., Parisi G., Sutera A. et al. // SIAM J. Appl. Mathem. 1983. V. 43. № 3. P. 565
- Gammaitoni L., Haönggi P., Jung P. et al. // Rev. Modern Phys. 1998. V. 70. № 1. P. 223.
- Wellens T., Shatokhin V., Buchleitner A. // Rep. Prog. Phys. 2004. V. 67. № 1. P. 45.
- Baughman R.H., Cui C., Zakhidov A.A., Iqbal Z.r et al. // Science. 1999. V. 284. P. 1340.
- Fujii H., Setiadi A., Kuwahara Y. et al. // Appl. Phys. Lett. 2017. V. 111. № 13. P. 133501.
- Huang K., Zhang S., Li J. et al // Microsystem Technol. 2019. V. 25. № 11. P. 4303.
- Ackerman M.L., Kumar P., Neek-Amal M. et al. // Phys. Rev. Lett. V. 117. № 12. P. 126 801.
- Hayashi K., Lorenzo S., Manosas M. et al. // Phys. Rev. X. 2012. V. 2. № 3. P. 031 012.
- Cecconi C., Shank E.A., Bustamante C. et al. // Science. 2005. V. 309. № 5743. P. 2057.
- Avetisov V.A., Markina A.A. Valov A.F. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 5189.
- Avetisov V.A., Frolkina M.A., Markina A. et al // Nanomaterials. 2021. V. 11. P. 3264.
- Markina A., Muratov A., Petrovskyy V. et al. // Nanomaterials. 2020. V. 10. P.2519.
- Convertine A.J., Ayres N., Scales C.W. et al. // Biomacromolecules. 2004. V. 5. № 4. P. 1177.
- Gao Y., Wei M., Li X. et al. // Macromol. Res. 2017. V. 25. № 6. P. 513.
- Kamath G., Deshmukh S.A., Baker G.A. // Phys. Chem. Chem. Phys. 2013. V. 15. № 30. P. 12667.
- Jones R.A., Civcir P.U. // Tetrahedron. 1997. V. 53. № 34. P. 11529.
- Sahu H., Gupta S., Gaur P. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. № 32. P. 20647.
- Berendsen H.J.C., Grigera J.R., Straatsma T.P. // J. Phys. Chem. 1987. V. 91. № 24. P. 6269.
- Abraham M.J., Murtola T., Schulz R. et al. // Software X. 2015. V. 1–2. P. 19.
- Kaminski G.A., Friesner R.A., Tirado-Rives J. et al. // J. Phys Chem. B. 2001. V. 105. № 28. P. 6474.
- Liang X., Nakajima K. // Macromol. Chem. Phys. 2018. V. 219. № 3. P. 1700394.
- Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126. № 1. P. 014101.
- Avetisov V.A, Kuz’min V.V, Anikin S.A. // Chem. Phys. 1987. V. 112. № 2. P. 179.
- Lai Z., Leng Y. // Mech. Systems Signal Processing. 2016. V. 81. P. 60.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 











