The Anisotropy Degree Measurement of Electrical Properties of the Epoxy Resin — Magnetic Fluid — Carbon Nanotubes Composite

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The electrical properties of a material representing a composite of epoxy resin, magnetic fluid and carbon nanotubes are investigated. It is shown that in composites dried in the presence of a magnetic field, elongated conductive structures consisting of carbon nanotubes and magnetic fluid are formed. Their presence causes the appearance of anisotropy of the electrical properties of such composites. The anisotropy of the properties was studied by microwave waveguide methods, according to the frequency dependence of the reflection coefficient of microwave radiation from a periodic structure in which the composite under study was used as a damaged layer. It was found that the electrical properties of the composite depend on the magnitude and direction of the magnetic field induction, as well as on changes in the concentration of components in the composite. Numerical modeling was performed and the importance of taking into account the anisotropy of the electrical properties of the formed structures when calculating the integral parameters of the composite was shown.

作者简介

A. Postelga

Chernyshevsky Saratov National Research State University

编辑信件的主要联系方式.
Email: sanyalace@inbox.ru
俄罗斯联邦, 83, Astrakhanskaya St., Saratov, 410012

S. Igonin

Chernyshevsky Saratov National Research State University

Email: igoninsemen@ya.ru
俄罗斯联邦, 83, Astrakhanskaya St., Saratov, 410012

参考

  1. Gholizadeh S. A review of non-destructive testing methods of composite materials // Procedia Structural Integrity. 2016. V. 1. P. 050—057. doi: 10.1016/j.prostr.2016.02.008
  2. Mohammed S.R., Mohamed A. Abou-Khousa, Muhammad F.A. A review on microwave non-destructive testing (NDT) of composites // Engineering Science and Technology, an International Journal. 2024. V. 58. Art. No. 101848. DOI: https://doi.org/10.1016/j.jestch.2024.101848
  3. Kaz’min A.I., Fedyunin P.A., Fedyunin D.P. Evaluation of Permittivity and Thickness Gaging for Anisotropic Dielectric Coatings by the Method of Surface Electromagnetic Waves // Defectoskopiya. 2021. No. 6. P. 57—72.
  4. Vegesna S., Irin F., Green M., Sae M. Non-destructive technique for broadband characterization of carbon nanotubes at microwave frequencies // Journal of Electromagnetic Waves and Applications. 2013. V. 27. No. 11. P. 1372—1381. DOI: http://dx.doi.org/10.1080/09205071.2013.808968
  5. Bochkova T.S., Igonin S.V., Usanov D.A., Postelga A.É. Determining Parameters of a Ferrofluid Based on the Temperature Dependence of Microwave Reflection Spectrum with Allowance for the Formed Agglomerates of Ferromagnetic Nanoparticles // Defectoskopiya. 2018. No. 8. P. 41—49. doi: 10.1134/S0130308218080055
  6. Hughes K.J., Iyer K.A., Bird R.E., Ivanov J., Banerjee S., Georges G., Zhou Q.A. Review of Carbon Nanotube Research and Development Materialsand Emerging Applications // ACS Appl. Nano Mater. 2024. V. 7. P. 18695—18713. DOI: https://doi.org/10.1021/acsanm.4c02721
  7. Balguria P.K., Harris Samuel D.G., Thumu U. A review on mechanical properties of epoxy nanocomposites // Materials Today: Proceedings. 2021. V. 44. Part 1. P. 346—355. DOI: https://doi.org/10.1016/j.matpr.2020.09.742
  8. Ogbonna V.E., Popoola A.P.I., Popoola O.M. A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications // Polymer Bulletin. 2023. V. 80. P. 3449—3487. DOI: https://doi.org/10.1007/s00289-022-04249-4
  9. Singh B.P., Verma P., Veena C., Saini P., Pande S., Singh V.N., Mathur R.B. Enhanced microwave shielding and mechanical properties of high loading MWCNT—epoxy composites // J. Nanopart Res. 2013. V. 15. No. 4. Art. No. 1554. doi: 10.1007/s11051-013-1554-0
  10. Usanov D.A., Skripal A.V., Romanov A.V. Complex permittivity of composites based on dielectric matrices with carbon nanotubes // Technical Physics. 2011. V. 56. No. 1. P. 102—106. doi: 10.1134/S1063784211010257
  11. Valdirene Aparecida da Silva, Rezende M.C. S-parameters, electrical permittivity, and absorbing energy measurements of carbon nanotubes-based composites in X-band // J. Appl. Polym. Sci. 2020. V. 138. No. 7. P. 1—10. doi: 10.1002/app.49843
  12. Vorob’eva E.A., Evseev A.P., Petrov V.L., Shemukhin A.A., Chechenin N.G. The conductivity in Composite Materials Based on Oriented Carbon Nanotubes // Moscow University Physics Bulletin. 2021. V. 76. No. 1. P. 29—35. doi: 10.3103/S0027134921010112
  13. Vovchenko L.L., Zagorodnii V.V., Yakovenko O.S., Matzui L.Yu., Oliynyk V.V., Launets V.L. Microwave Properties and Conductivity Anisotropy of Oriented Multiwalled Carbon Nanotube/Epoxy Composites // Metallofiz. Noveishie Tekhnol. 2016. V. 38. No. 5. P. 657—668. doi: 10.15407/mfint.38.05.0657
  14. Kim I.T., Tannenbaum A., Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices // Carbon. 2011. V. 49. No. 1. P. 54—61. DOI: https://doi.org/10.1016/j.carbon.2010.08.041
  15. Shahsavar A., Salimpour M.R., Saghafian M., Shafii M.B. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes // J. Mech. Sci. Technol. 2016. V. 30. No. 2. P. 809—815. doi: 10.1007/s12206-016-0135-4
  16. Vales-Pinzón C., Alvarado-Gil J.J., Medina-Esquivel R., Martínez-Torres P. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field // J. Magn. Magn. Mat. 2014. V. 369. P. 114—121. DOI: https://doi.org/10.1016/j.jmmm.2014.06.025
  17. Dotsenko O.A., Pavlova A.A., Dotsenko V.S. The effect of external magnetic field on dielectric permeability of multiphase ferrofluids // Russian Physics Journal. 2018. V. 60. N. 11. P. 1955—1960. doi: 10.1007/s11182-018-1308-7
  18. Turkin S.D., Dikansky Yu.I. Peculiarities of Reflection of Electromagnetic Waves in the Microwave Range from Magnetic Colloids // Technical Physics. 2021. V. 66. No. 1. P. 124—132. doi: 10.1134/S1063784221010229
  19. Sloan R., Stakenborghs R.J. Recent Developments in the Industrial Application of Microwave NDT / Sensors and Communication Technologies in the 1 GHz to 10 THz Band. 2024 Proceedings Volume 13203. DOI: https://doi.org/10.1117/12.3037072
  20. Usanov D.A., Nikitov S.A., Skripal A.V., Ponomarev D.V., Latysheva E.V. Measurements of electrophysical characteristics of semiconductor structures with the use of microwave photonic crystals // Semiconductors. 2016. V. 50. No. 13. P. 1759—1763. doi: 10.1134/S1063782616130091
  21. Skripal A.V., Ponomarev D.V., Komarov A.A., Sharonov V.E. Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers // Izvestiya of Saratov University Physics. 2022. V. 22. No. 2. P. 123—130. doi: 10.18500/1817-3020-2022-22-2-123-130
  22. Usanov D.A., Skripal A.V., Abramov A.V., Bogolyubov A.S. Determination of the metal nanometer layer thickness and semiconductor conductivity in metal-semiconductor structures from electromagnetic reflection and transmission spectra // Technical Physics. 2006. V. 51. No. 5. P. 644—649. doi: 10.1134/S1063784206050173
  23. Sushko M., Kris’kiv S.K. Compact group method in the theory of permittivity of heterogeneous systems // Technical Physics. 2009. V. 54. No. 3. P. 423—427. doi: 10.1134/S1063784209030165

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025