Исследование метода мониторинга и распознавания утечек в водородных клапанах высокого давления
- Авторы: Цинь И1, Ян Ч.1, Кан Ц.1, Ву Ц.1, Ван Ю.1, Юй А.1, Лю Х.1, Ло Ю.1
-
Учреждения:
- Научно-исследовательский институт техники безопасности компании СИНОПЕК
- Выпуск: № 2 (2025)
- Страницы: 3-16
- Раздел: Акустические методы
- URL: https://filvestnik.nvsu.ru/0130-3082/article/view/685870
- DOI: https://doi.org/10.31857/S0130308225020019
- ID: 685870
Цитировать
Аннотация
Водородные клапаны высокого давления подвергаются мгновенному воздействию потока водорода и многократному действию старт-стоп во время эксплуатации, и существует потенциальный риск утечки. В данной работе исследуются вопросы мониторинга и идентификации утечек в водородных клапанах для обеспечения их эксплуатационной надежности. Во-первых, система мониторинга акустических сигналов была построена на основе платформы для испытания газовой герметичности водородных клапанов высокого давления, и проведен анализ характеристик клапанов во временной области при различных условиях утечки. Во-вторых, характеристики частотной области извлекаются с помощью комбинации вариационного модального разложения и вейвлетного разложения пакетов. В конечном итоге для распознавания паттернов акустических сигналов используются сеть обратного распространения (BP) и сверточная нейронная сеть (CNN), причем параметры временной и частотной областей подаются на вход независимо. Результаты показывают, что точность сетей BP и CNN, основанных на признаках частотной области, значительно повысилась до 93,33 и 91,67 % соответственно. В данной работе получен метод выделения признаков и распознавания образов для водородных клапанов, который служит основой для точного и эффективного распознавания состояния утечки водородных клапанов высокого давления в процессе эксплуатации.
Полный текст

Об авторах
И Цинь
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Чжэ Ян
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Цзэтянь Кан
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Автор, ответственный за переписку.
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Цянь Ву
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Юйчэнь Ван
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Аньфэн Юй
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Хуань Лю
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Юнь Ло
Научно-исследовательский институт техники безопасности компании СИНОПЕК
Email: kangzt_upc@163.com
Китай, Сонглинг-Роуд, 339, район Лаошань, Циндао, Шаньдун, 266000
Список литературы
- Filippov S.P., Yaroslavtsev A.B. Hydrogen energy: Development prospects and materials // Russian Chemical Reviews. 2021. V. 90 (6). P. 627. https://doi.org/10.1070/RCR5014
- Vechkinzova E., Steblyakova L.P., Roslyakova N. et al. Prospects for the development of hydrogen energy: Overview of global trends and the Russian market state // Energies. 2022. V. 15 (22). P. 8503. https://doi.org/10.3390/en15228503
- Ferlazzo A., Espro C., Iannazzo D. et al. A novel yttria-doped ZrO2 based conductometric sensor for hydrogen leak monitoring // International Journal of Hydrogen Energy. 2022. V. 47 (16). P. 9819—28. https://doi.org/10.1016/j.ijhydene.2022.01.036
- Falsafi F., Hashemi B., Mirzaei A. et al. Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor // Ceramics International. 2017. V. 43 (1, Part B). P. 1029—37. https://doi.org/10.1016/j.ceramint.2016.10.035
- Chen Y., Yang Y., Liang C. et al. Palladium-based optical fiber Bragg grating hydrogen sensors: A comprehensive review // Optics & Laser Technology. 2024. V. 175. P. 110850. https://doi.org/10.1016/j.optlastec.2024.110850
- Sazhin S., Soborover E., Tokarev S. Sensor methods of ammonia inspection // Russian journal of nondestructive testing. 2003. V. 39 (10). P. 791—806. https://doi.org/10.1023/B:RUNT.0000020251.56686.a5
- Ye Z., Ruan H., Hu X. et al. TBAOH intercalated WO3 for high-performance optical fiber hydrogen sensor // International Journal of Hydrogen Energy. 2022. V. 47 (65). P. 28204—11. https://doi.org/10.1016/j.ijhydene.2022.06.133
- Zhao L., Cao Z., Deng J. A review of leak detection methods based on pressure waves in gas pipelines // Measurement. 2024. V. 236. P. 115062. https://doi.org/10.1016/j.measurement.2024.115062
- Banjara N.K., Sasmal S., Voggu S. Machine learning supported acoustic emission technique for leakage detection in pipelines // International Journal of Pressure Vessels and Piping. 2020. V. 188. P. 104243. https://doi.org/10.1016/j.ijpvp.2020.104243
- Shi M., Liang Y., Qin L. et al. Prediction method of ball valve internal leakage rate based on acoustic emission technology // Flow Measurement and Instrumentation. 2021. V. 81. P. 102036. https://doi.org/10.1016/j.flowmeasinst.2021.102036
- Mostafapour A., Davoudi S. Analysis of leakage in high pressure pipe using acoustic emission method // Applied Acoustics. 2013. V. 74 (3). P. 335—42. https://doi.org/10.1016/j.apacoust.2012.07.012
- Ye G.-Y., Xu K.-J., Wu W.-K. Multivariable modeling of valve inner leakage acoustic emission signal based on Gaussian process // Mechanical Systems and Signal Processing. 2020. V. 140. P. 106675. https://doi.org/10.1016/j.ymssp.2020.106675
- Asatryan R., Asatryan S., Sukoyan L. et al. A spectroradiometer for remote ecological testing of gas main pipelines // Russian Journal of Nondestructive Testing. 2010. V. 46 (8). P. 598—602. https://doi.org/10.1134/S1061830910080085
- Tian C.H., Yan J.C., Huang J. et al. Negative pressure wave based pipeline leak detection: Challenges and algorithms / proceedings of the Proceedings of 2012 IEEE international conference on service operations and logistics, and informatics. F, 2012 [C]. IEEE.
- Li J., Weng H., Yang Q. et al. Data-driven diagnosis method of high-pressure hydrogen leakage based on actual driving conditions and probabilistic neutral network // International Journal of Hydrogen Energy. 2024. V. 71. P. 411—21. https://doi.org/10.1016/j.ijhydene.2024.04.204
- Prateepasen A., Kaewwaewnoi W., Kaewtrakulpong P. Smart portable noninvasive instrument for detection of internal air leakage of a valve using acoustic emission signals // Measurement. 2011. V. 44 (2). P. 378—84. https://doi.org/10.1016/j.measurement.2010.10.009
- Banjara N.K., Sasmal S., Kapuria S. Fatigue and leakage-type damage detection in metallic plates and pipelines using piezoelectric patch acoustic sensors // International Journal of Pressure Vessels and Piping. 2024. V. 209. P. 105162. https://doi.org/10.1016/j.ijpvp.2024.105162
- Li Z., Zhang H., Tan D. et al. A novel acoustic emission detection module for leakage recognition in a gas pipeline valve // Process Safety and Environmental Protection. 2017. V. 105. P. 32—40. https://doi.org/10.1016/j.psep.2016.10.005
- Zhang Y., Yang G., Zhang D. et al. Investigation on recognition method of acoustic emission signal of the compressor valve based on the deep learning method // Energy Reports. 2021. V. 7. P. 62—71. https://doi.org/10.1016/j.egyr.2021.10.053
- Xu C., Du S., Gong P. et al. An improved method for pipeline leakage localization with a single sensor based on modal acoustic emission and empirical mode decomposition with Hilbert transform // IEEE Sensors Journal. 2020. V. 20 (10). P. 5480—91. https://doi.org/10.1109/JSEN.2020.2971854
- Martyugov A., Ershov E., Varfolomeev I. et al. Method of processing acoustic information for purposes of monitoring state of valves of gas cleaning equipment // Russian Journal of Nondestructive Testing. 2021. V. 57. P. 838—45. https://doi.org/10.1134/S1061830921100041
- Qiu F., Shen Z., Bai Y. et al. Hydrogen defect acoustic emission recognition by deep learning neural network // International Journal of Hydrogen Energy. 2024. V. 54. P. 878—93. https://doi.org/10.1016/j.ijhydene.2023.09.176
- Khlybov A., Uglov A., Ryabov D. Developing a Method for Assessing the Degree of Hydrogenation of VT1-0 Titanium Alloy by the Acoustic Method // Russian Journal of Nondestructive Testing. 2024. V. 60 (8). P. 843—58. https://doi.org/10.1134/S1061830924601739
- Peng J., Cairui L., Luying Z. et al. Study on Material Damage Characterization of High-Pressure Hydrogen Storage Vessels Based on DIC and Acoustic Emission Entropy // Russian Journal of Nondestructive Testing. 2022. V. 58 (6). P. 433—43. https://doi.org/10.1134/S1061830922060055
- Wang D., Liao B., Hao C. et al. Acoustic emission characteristics of used 70 MPa type IV hydrogen storage tanks during hydrostatic burst tests // International Journal of Hydrogen Energy. 2021. V. 46 (23). P. 12605—14. https://doi.org/10.1016/j.ijhydene.2020.12.177
- Li Y., Xu F. Structural damage monitoring for metallic panels based on acoustic emission and adaptive improvement variational mode decomposition–wavelet packet transform // Structural Health Monitoring. 2022. V. 21 (2). P. 710—30.
- Mostafapour A., Davoodi S. Continuous leakage location in noisy environment using modal and wavelet analysis with one AE sensor // Ultrasonics. 2015. V. 62. P. 305—11. https://doi.org/10.1016/j.ultras.2015.06.004.
- Du J., Wang H., Chen C. et al. Damage classification and evolution in composite under low-velocity impact using acoustic emission, machine learning and wavelet packet decomposition // Engineering Fracture Mechanics. 2024. P. 110238. https://doi.org/10.1016/j.engfracmech.2024.110238
- Pan Y., Zhang L., Wu X. et al. Structural health monitoring and assessment using wavelet packet energy spectrum // Safety Science. 2019. V. 120. P. 652—65. https://doi.org/10.1016/j.ssci.2019.08.015
- Gutkin R., Green C., Vangrattanachai S. et al. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses // Mechanical systems and signal processing. 2011. V. 25 (4). P. 1393—407. https://doi.org/10.1016/j.ymssp.2010.11.014
- Zhou L., Wang P., Zhang C. et al. Multi-mode fusion BP neural network model with vibration and acoustic emission signals for process pipeline crack location // Ocean Engineering. 2022. V. 264. P. 112384. https://doi.org/10.1016/j.oceaneng.2022.112384
- Zhou J., Lin H., Li S. et al. Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network // Reliability Engineering & System Safety. 2023. V. 232. P. 109051. https://doi.org/10.1016/j.ress.2022.109051
- Zhao H., Li Z., Zhu S. et al. Valve internal leakage rate quantification based on factor analysis and wavelet-BP neural network using acoustic emission // Applied Sciences. 2020. V. 10 (16). P. 5544. https://doi.org/10.3390/app10165544
- Krysko N., Skrynnikov S., Shchipakov N. et al. Classification and Sizing of Surface Defects in Pipelines Based on the Results of Combined Diagnostics by Ultrasonic, Eddy Current, and Visual Inspection Methods of Nondestructive Testing // Russian Journal of Nondestructive Testing. 2023. V. 59 (12). P. 1315—23. https://doi.org/10.1134/S1061830923601022
- Ai L., Bayat M., Ziehl P. Localizing damage on stainless steel structures using acoustic emission signals and weighted ensemble regression-based convolutional neural network // Measurement. 2023. V. 211. P. 112659. https://doi.org/10.1016/j.measurement.2023.112659
Дополнительные файлы
