Structural Mechanisms of Phase Transitions of Water Ices II, IV, and V to Metastable Ice Ic at Atmospheric Pressure
- Authors: Zheligovskaya E.A.1
- 
							Affiliations: 
							- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
 
- Issue: Vol 97, No 1 (2023)
- Pages: 13-20
- Section: ПАМЯТИ Н.А. БУЛЬЕНКОВА
- Submitted: 27.02.2025
- Published: 01.01.2023
- URL: https://filvestnik.nvsu.ru/0044-4537/article/view/668859
- DOI: https://doi.org/10.31857/S0044453723010399
- EDN: https://elibrary.ru/BEDKRW
- ID: 668859
Cite item
Abstract
Model structural mechanisms of transitions between crystalline water ices II → Ic, IV → Ic, and V → Ic are proposed. It is established that in the proposed II → Ic transition mechanism, one of the three systems of infinite parallel chains consisting of adjacent hexacycles and running along the 〈0001〉 direction of ice II is preserved, and these chains become parallel to one of the 〈211〉 directions of ice Ic. The proposed mechanism of the V → Ic transition preserves both systems of infinite parallel chains of adjacent hexacycles extended along the [101] and [10–1] directions of ice V; in ice Ic, they run along two directions 〈211〉 parallel to the same {120} plane. According to the proposed mechanism of the IV → Ic transition, puckered surfaces of hexacycles are retained. In all three cases, 3/4 of all hydrogen bonds are retained during the transition, and 1/4 of the bonds are rearranged. It is shown that the structures of ices II, IV, and V consist of the same structural element, which is slightly modified in ice V.
About the authors
E. A. Zheligovskaya
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: lmm@phyche.ac.ru
				                					                																			                												                								119071, Moscow, Russia						
References
- Памяти Н.А. Бульенкова // Журн. физ. химии. 2022. Т. 96. № 6. С. 917.
- Бульенков Н.А. // Биофизика. 1991. Т. 36. № 2. С. 181.
- Бульенков Н.А. // Там же. 2005. Т. 50. № 5. С. 934.
- Бульенков Н.А. // Кристаллография. 2011. Т. 56. № 4. С. 729.
- Bulienkov N.A., Zheligovskaya E.A. // Struct. Chem. 2017. V. 28. № 1. P. 75. https://doi.org/10.1007/s11224-016-0837-3
- Zheligovskaya E.A., Bulienkov N.A. // Physics of Wave Phenomena. 2021. V. 29. No. 2. P. 141. https://doi.org/10.3103/S1541308X21020163
- Бульенков Н.А. // Докл. АН СССР. 1985. Т. 284. № 6. С. 1392. (Физическая химия)
- Желиговская Е.А., Бульенков Н.А. // Кристаллография. 2008. Т. 53. № 6. С. 1126.
- Желиговская Е.А., Маленков Г.Г. // Успехи химии. 2006. Т. 75. № 1. С. 64.
- del Rosso L., Celli M., Grazzi F. et al. // Nature Materials. 2020. V. 19. P. 663. https://doi.org/10.1038/s41563-020-0606-y
- Salzmann C.G. // J. Chem. Phys. 2019. V. 150. P. 060901 (1–10). https://doi.org/10.1063/1.5085163
- Komatsu K., Machida S., Noritake F. et al. // Nature Communications. 2020. V. 11. P. 464 (1–5). https://doi.org/10.1038/s41467-020-14346-5
- Желиговская Е.А. // Кристаллография. 2015. Т. 60. № 5. С. 779.
- Kamb B. // Sci. 1965. V. 150. P. 205. https://doi.org/10.1126/science.150.3693.205
- Kamb B. // Acta Cryst. 1964. V. 17. P. 1437. https://doi.org/10.1107/S0365110X64003553
- Engelhardt H., Kamb B. // J. Chem. Phys. 1981. V. 75. P. 5887. https://doi.org/10.1063/1.442040
- Kamb B., Prakash A., Knobler C. // Acta Cryst. 1967. V. 22. P. 706. https://doi.org/10.1107/S0365110X67001409
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					




