STABILIZATION OF THE COLLINEAR PLATEAU PHASE BY THERMAL FLUCTUATIONS IN THE DILUTED TRIANGULAR LATTICE ANTIFERROMAGNET Rb(1-x)KxFe(MoO4)2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

The triangular lattice antiferromagnet RbFe(MoO4)2 orders antiferromagnetically in a planar 120°-structure below TN≈ 4 K. A striking feature of RbFe(MoO4)2 magnetic phase diagram is the presence of collinear «1/3-plateau» magnetic phase, which is stabilized by thermal and quantum fluctuations at magnetic fields in the vicinity of 1/3 of a saturation field. Quenched disorder caused by impurities is predicted to act against the effect of fluctuations and to suppress collinear plateau phase [V. S. Maryasin and M. E. Zhitomirsky, Phys. Rev. Lett. 111, 247201 (2013)]. Balance between thermal and quantum fluctuations and «static» impurity-induced disorder is temperature-sensitive, which allows thermal fluctuations to take over the effect of static disorder and leads to the restoration of the fluctuation-stabilized «1/3-plateau» phase on heating. Here we present experimental results directly confirming this prediction and demonstrating re-establishment of the plateau-like phase in the diluted Rb(1-x)KxFe(MoO4)2 sample at moderate dilution level x=0.15 on increasing the temperature.

Об авторах

V. N Glazkov

P. L. Kapitza Institute for Physical Problems, Russian Academy of Sciences

Email: glazkov@kapitza.ras.ru
Moscow, Russia

J. A Krastilevskiy

P. L. Kapitza Institute for Physical Problems, Russian Academy of Sciences

Moscow, Russia

Список литературы

  1. P. W. Anderson, Resonating Valence Bonds: A New Kind of Insulator?, Mater. Res. Bull. 8, 153 (1973); doi: 10.1016/0025-5408(73)90167-0.
  2. P. Fazekas and P. W. Anderson, On the Ground State Properties of the Anisotropic Triangular Antiferromagnet, Phil. Mag. 30, 423 (1974); doi: 10.1080/14786439808206568.
  3. S. Miyashita, A Variational Study of the Ground State of Frustrated Quantum Spin Models, J. Phys. Soc. Jpn. 53, 44 (1984); doi: 10.1143/JPSJ.53.44.
  4. S. Miyashita and H. Shiba, Nature of the Phase Transition of the Two-Dimensional Antiferromagnetic Plane Rotator Model on the Triangular Lattice, J. Phys. Soc. Jpn. 53, 1145 (1984); doi: 10.1143/JPSJ.53.1145.
  5. M. F. Collins and O. A. Petrenko, Triangular Antiferromagnets, Can. J. Phys. 75, 605 (1997); doi: 10.1139/p97-007
  6. Y. Nishiwaki, K. Iio, and T. Mitsui, Multiferroic Phase Transitions of Triangular-Lattice-Antiferromagnet RbCoBr3, J. Korean Phys. Soc. 46, 285 (2005).
  7. M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Ya. Shapiro, and L. A. Demianets, Direct Transition from a Disordered to a Multiferroic Phase on a Triangular Lattice, Phys. Rev. Lett. 98, 267205 (2007); doi: 10.1103/Phys-RevLett.98.267205.
  8. A. L. Chernyshev and M. E. Zhitomirsky, Spin Waves in a Triangular Lattice Antiferromagnet: Decays, Spectrum Renormalization, and Singularities, Phys. Rev. B 79, 144416 (2009); doi: 10.1103/Phys-RevB.79.144416.
  9. H. Kawamura, Spin-Wave Analysis of the Antiferromagnetic Plane Rotator Model on the Triangular Lattice — Symmetry Breaking in a Magnetic Field, J. Phys. Soc. Jpn. 53, 2452 (1984); doi: 10.1143/JPSJ.53.2452.
  10. A. V. Chubukov and D. I. Golosov, Quantum theory of an antiferromagnet on a triangular lattice in a magnetic field, J. Phys. Condens.Matter 3, 69 (1991), doi: 10.1088/0953-8984/3/1/005
  11. H. Kawamura and S. Miyashita, Phase Transition of the Heisenberg Antiferromagnet on the Triangular Lattice in a Magnetic Field, J. Phys. Soc. Jpn. 54, 4530 (1985); doi: 10.1143/JPSJ.54.4530.
  12. T. Coletta, T. A. Toth, K. Penc, and F. Mila, Semiclassical Theory of the Magnetization Process of the Triangular Lattice Heisenberg Model, Phys. Rev. B 94, 075136 (2016); doi: 10.1103/Phys-RevB.94.075136.
  13. A. I. Smirnov, H. Yashiro, S. Kimura, M. Hagiwara, Y. Narumi, K. Kindo, A. Kikkawa, K. Katsumata, A. Ya. Shapiro, and L. N. Demianets, Triangular Lattice Antiferromagnet RbFe(MoO4)2 in High Magnetic Fields, Phys. Rev. B 75, 134412 (2007); doi: 10.1103/PhysRevB.75.134412.
  14. Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Experimental Realization of a Spin-1/2 Triangular-Lattice Heisenberg Antiferromagnet, Phys. Rev. Lett. 108, 057205 (2012); doi: 10.1103/Phys-RevLett.108.057205.
  15. T. Susuki, N. Kurita, T. Tanaka, H. Nojiri, A. Matsuo, K. Kindo, and H. Tanaka, Magnetization Process and Collective Excitations in the S=1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoSb2O9, Phys. Rev. Lett. 110, 267201 (2013); doi: 10.1103/PhysRevLett.110.267201.
  16. V. S. Maryasin and M. E. Zhitomirsky, Triangular Antiferromagnet with Nonmagnetic Impurities, Phys. Rev. Lett. 111, 247201 (2013); doi: 10.1103/Phys-RevLett.111.247201.
  17. S. A. Klimin, M. N. Popova, B. N. Mavrin, P. H. M. van Loosdrecht, L. E. Svistov, A. I. Smirnov, L. A. Prozorova, H.-A. Krug von Nidda, Z. Seidov, A. Loidl, A. Ya. Shapiro, and L. N. Demianets, Structural Phase Transition in the Two-Dimensional Triangular Lattice Antiferromagnet RbFe(MoO4)2, Phys. Rev. B 68, 174408 (2003); doi: 10.1103/Phys-RevB.68.174408.
  18. T. Inami, Neutron Powder Diffraction Experiments on the Layered Triangular-Lattice Antiferromagnets RbFe(MoO4)2 and CsFe(SO4)2, J. Solid State Chem. 180, 2075 (2007); doi: 10.1016/j.jssc.2007.04.022.
  19. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, L. N. Demianets, and A. Ya. Shapiro, Quasi-Two-Dimensional Antiferromagnet on a Triangular Lattice RbFe(MoO4)2, Phys. Rev. B 67, 139901 (2003); doi: 10.1103/PhysRevB.67.094434.
  20. A. I. Smirnov, L. E. Svistov, L. A. Prozorova, O. A. Petrenko, and M. Hagiwara, Triangular Lattice Antiferromagnet RbFe(MoO4)2, Phys.-Usp. 53, 844 (2010); doi: 10.3367/UFNe.0180.201008l.0880.
  21. L. E. Svistov, L. A. Prozorova, N. Buttgen, A. Ya. Shapiro, and L. N. Demyanets, 87Rb NMR study of the magnetic structure of the quasi-twodimensional antiferromagnet RbFe(MoO4)2 on a triangular lattice, JETP Lett. 81, 102 (2005); doi: 10.1134/1.1897999.
  22. Yu. A. Sakhratov, L. E. Svistov, and A. P. Reyes, Anisotropy Stabilized Magnetic Phases of the Triangular Antiferromagnet RbFe(MoO4)2, JETP 137, 526 (2023); doi: 10.1134/S1063776123100102.
  23. A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, M. E. Zhitomirsky, and A. Ya. Shapiro, Competition Between Dynamic and Structural Disorder in a Doped Triangular Antiferromagnet RbFe(MoO4)2, J. Phys.: Conf. Ser. 969, 012115 (2018); doi: 10.1088/1742-6596/969/1/012115.
  24. J. S.White, Ch. Niedermayer, G. Gasparovic, C. Broholm, J. M. S. Park, A. Ya. Shapiro, L. A. Demianets, and M. Kenzelmann, Multiferroicity in the Generic Easy-Plane Triangular Lattice Antiferromagnet RbFe(MoO4)2, Phys. Rev. B 88, 060409(R) (2013); doi: 10.1103/PhysRevB.88.060409.
  25. A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, A. Ya. Shapiro, and M. E. Zhitomirsky, Order by Quenched Disorder in the Model Triangular Antiferromagnet RbFe(MoO4)2, Phys. Rev. Lett. 119, 047204 (2017); doi: 10.1103/PhysRevLett.119.047204.
  26. Yu. A. Sakhratov, M. Prinz-Zwick, D. Wilson, N. Buttgen, A. Ya. Shapiro, L. E. Svistov, and A. P. Reyes, Magnetic Structure of the Triangular Antiferromagnet RbFe(MoO4)2 weakly doped with nonmagnetic K+ ions studied by NMR, Phys. Rev. B 99, 024419 (2019); doi: 10.1103/Phys-RevB.99.024419.
  27. V. N. Glazkov, C. Marin, and J.-P. Sanchez, Observation of a Transverse Magnetization in the Ordered Phases of the Pyrochlore Magnet Gd2Ti2O7, J. Phys.: Condens. Matter 18, L429 (2006); doi: 10.1088/0953-8984/18/34/L01.
  28. O. A. Petrenko, M. R. Lees, G. Balakrishnan, V. N. Glazkov, and S. S. Sosin, Magnetic Phases in a Gd2Ti2O7 pyrochlore for a field applied along the [100] axis, Phys. Rev. B 85, 180412(R) (2012); doi: 10.1103/PhysRevB.85.180412.
  29. I. Sheikin, A. Groger, S. Raymond, D. Jaccard, D. Aoki, H. Harima, and J. Flouquet, High Magnetic Field Study of CePd2Si2, Phys. Rev. B 67, 094420 (2003); doi: 10.1103/PhysRevB.67.094420.
  30. M. T. Heinila and A. S. Oja, Selection of the Ground State in Type-I fcc Antiferromagnets in an External Magnetic Field, Phys. Rev. B 48, 7227 (1993); doi: 10.1103/PhysRevB.48.7227.
  31. V. N. Glazkov, Reminiscence of a Magnetization Plateau in a Magnetization Processes of Toy-Model Triangular and Tetrahedral Clusters, JETP 128, 464 (2019); doi: 10.1134/S106377611903004X.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025