ON THE THEORY OF HOMOGENEOUS NUCLEATION OF CRYSTALS FROM MELTS
- Авторы: Veshchunov M.S1
-
Учреждения:
- Nuclear Safety Institute (IBRAE), Russian Academy of Sciences
- Выпуск: Том 168, № 3 (2025)
- Страницы: 401-413
- Раздел: ПОРЯДОК, БЕСПОРЯДОК И ФАЗОВЫЕ ПЕРЕХОДЫ В КОНДЕНСИРОВАННЫХ СРЕДАХ
- URL: https://filvestnik.nvsu.ru/0044-4510/article/view/692045
- DOI: https://doi.org/10.7868/S3034641X25090134
- ID: 692045
Цитировать
Полный текст



Аннотация
A new model for the kinetics of homogeneous nucleation of crystals from melts is developed in the framework of classical nucleation theory. The traditional approach considering the mechanism of mass transfer from the melt to nucleated particles by random attachment of atoms at the interface, which is valid for crystals with atomically rough interface, is modified in application to faceted crystalline particles with atomically smooth interface, whose growth is controlled by two-dimensional nucleation of terraces of monoatomic height on the crystal faces. The new model demonstrates a strong suppression of the nucleation rate compared to the traditional approach.
Об авторах
M. S Veshchunov
Nuclear Safety Institute (IBRAE), Russian Academy of Sciences
Email: msvesh@gmail.com
Moscow, Russia
Список литературы
- K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology, Vol. 15, Elsevier (2010).
- A. A. Chernov, Modern Crystallography Iii: Crystal Growth, Vol. 36, Springer Science and Business Media (2012).
- M. Volmer and A. Weber, Keimbildung in Ubersattigten Gebilden, Z. Phys. Chem. 119, 277 (1926).
- R. Becker and W. Doering, Kinetische Behandlung der Keimbildung in Ubersattigten Dampfen, Ann. Phys. 24, 719 (1935).
- Ya. B. Zeldovich, On the Theory of New Phase Formation: Cavitation, Acta Physicochim. URSS 18, 1 (1943).
- D. Turnbull and J. C. Fisher, Rate of Nucleation in Condensed Systems, J. Chem. Phys. 17, 71 (1949).
- W. K. Burton, N. Cabrera, and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of Their Surfaces, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 243, 299 (1951).
- A. Pavlovska and D. Nenow, Experimental Study of the Surface Melting of Tetrabrommethane, J. Crystal Growth 39, 346 (1977).
- K. A. Jackson and C. E. Miller, Experimental Observation of the Surface Roughening Transition in Vapor Phase Growth, J. Crystal Growth 40, 169 (1977).
- B. E. Sundquist, A Direct Determination of the Anisotropy of the Surface Free Energy of Solid Gold, Silver, Copper, Nickel, and Alpha and Gamma Iron, Acta Metallurgica 12, 67 (1964).
- H. Muller-Krumbhaar, in: Crystal Growth and Materials, ed. by E. Kaldis and H. J. Scheel, North-Holland, Amsterdam (1977), p. 115.
- J. C. Heyraud and J. J. Metois, Growth Shapes of Metallic Crystals and Roughening Transition, J. Crystal Growth 82, 269 (1987).
- G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations, Chem. Rev. 116, 7078 (2016).
- Y. Shibuta, A Molecular Dynamics Study of Effects of Size and Cooling Rate on the Structure of Molybdenum Nanoparticles, J. Thermal Sci. Technol. 7, 45 (2012).
- A. Mahata, M. A. Zaeem, and M. I. Baskes, Understanding Homogeneous Nucleation in Solidification of Aluminum by Molecular Dynamics Simulations, Modelling and Simulation in Materials Science and Engineering 26, 025007 (2018).
- C. Valeriani, E. Sanz, and D. Frenkel, Rate of Homogeneous Crystal Nucleation in Molten NaCl, J. Chem. Phys. 122, 194501 (2005).
- D. Chakraborty and G. N. Patey, How Crystals Nucleate and Grow in Aqueous NaCl Solution, J. Phys. Chem. Lett. 4, 573 (2013).
- E. R. Buckle and A. R. J. P. Ubbelohde, Studies on the Freezing of Pure Liquids I. Critical Supercooling in Molten Alkali Halides, Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 259, 325 (1960).
- G. M. Pound, M. T. Simnad, and L. Yang, Heterogeneous Nucleation of Crystals From Vapor, J. Chem. Phys. 22, 1215 (1954).
- J. P. Hirth, On Two Dimensional Nucleation, Acta Met. 7, 755 (1959).
- N. Cabrera and W. K. Burton, Crystal Growth and Surface Structure. Part II, Discussions of the Faraday Society 5, 40 (1949).
- M. S. Veshchunov, On the Theory of Two-Dimensional Homogeneous Nucleation on Close-Packed Faces of Crystals Growing From Vapour, Zh. Eksp. Teor. Fiz. 160, 520 (2021) [JETP 133, 449 (2021)].
- R. J. Hunter, Introduction to Modern Colloid Science, Oxford University Press (1993).
- U. Landman, R. N. Barnett, C. L. Cleveland, and R. H. Rast, Theoretical Considerations of Energetics, Dynamics, and Structure at Interfaces, J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films 3, 1574 (1985).
- L. D. Landau and E. M. Lifshitz, Theoretical Physics. Vol. 10. Physical Kinetics, Elsevier, Amsterdam (1981), Chapter 99.
- J. Frenkel, Kinetic Theory of Liquids, Dover Publication, New York (1955).
- M. S. Veshchunov, On the Theory of Nucleation of Coherent Inclusions in Irradiated Crystals, J. Nucl. Mater. 599, 155254 (2024).
- D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergstrom, and H. Colfen, Pre-Nucleation Clusters as Solute Precursors in Crystallisation, Chemical Society Reviews 43, 2348 (2014).
- I. M. Lifshitz and V. V. Slyozov, The Kinetics of Precipitation From Supersaturated Solid Solution, J. Phys. Chem. Solids 19, 35 (1961).
- C. Wagner, Theory of Precipitate Change by Redissolution, Z. Electrochem. 65, 581 (1961).
- H. Cabane, D. Laporte, and A. Provost, Experimental Investigation of the Kinetics of Ostwald Ripening of Quartz in Silicic Melts, Contributions to Mineralogy and Petrology 142, 361 (2001).
Дополнительные файлы
