Low-Dimensional Magnetism in Namibite Cu(BiO)2VO4OH
- Authors: Shvanskaya L.V1,2, Bushneva T.D1, Ivanova A.G3, Pchelkina Z.V4,5, Vasil'chikova T.M1,2, Volkova O.S1,2, Vasil'ev A.N1,2
- 
							Affiliations: 
							- Moscow State University
- National Research Technological University MISIS
- Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences
- Ural Federal University
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
 
- Issue: Vol 164, No 4 (2023)
- Pages: 599-606
- Section: Articles
- URL: https://filvestnik.nvsu.ru/0044-4510/article/view/653639
- DOI: https://doi.org/10.31857/S0044451023100127
- EDN: https://elibrary.ru/XRAJQZ
- ID: 653639
Cite item
Abstract
A synthetic analog of rare secondary mineral namibite Cu(BiO)2VO4OH has been obtained by the hydrothermal method. The crystal structure of this compound contains isolated uniform chains of vertex-connected copper–oxygen octahedra. Magnetic susceptibility (χ) and magnetization (M) measurements have not indicated the long-range order in the temperature interval 2–300 K. Specific heat (Cp) measurements suggest the formation of a spin-liquid state at low temperatures. X-band electron paramagnetic resonance data recorded at low temperatures have demonstrated only a signal from impurities. First-principles calculations have estimated the exchange interaction in the chains as J = 555 K, whereas exchange interactions between the chains turn out to be one to two orders of magnitude smaller. Thus, namibite represents a rare example of an unordered half-integer spin chain.
About the authors
L. V Shvanskaya
Moscow State University; National Research Technological University MISIS
														Email: lshvanskaya@mail.ru
				                					                																			                												                								119991, Moscow, Russia; 119049, Moscow, Russia						
T. D Bushneva
Moscow State University
														Email: lshvanskaya@mail.ru
				                					                																			                												                								119991, Moscow, Russia						
A. G Ivanova
Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences
														Email: lshvanskaya@mail.ru
				                					                																			                												                								119333, Moscow, Russia						
Z. V Pchelkina
Ural Federal University; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
														Email: lshvanskaya@mail.ru
				                					                																			                												                								620002, Yekaterinburg, Russia; 620900, Yekaterinburg, Russia						
T. M Vasil'chikova
Moscow State University; National Research Technological University MISIS
														Email: lshvanskaya@mail.ru
				                					                																			                												                								119991, Moscow, Russia; 620002, Yekaterinburg, Russia						
O. S Volkova
Moscow State University; National Research Technological University MISIS
														Email: lshvanskaya@mail.ru
				                					                																			                												                								119991, Moscow, Russia; 119049, Moscow, Russia						
A. N Vasil'ev
Moscow State University; National Research Technological University MISIS
							Author for correspondence.
							Email: anvas2000@yahoo.com
				                					                																			                												                								119991, Moscow, Russia; 119049, Moscow, Russia						
References
- A. Vasiliev, O. Volkova, E. Zvereva, and M. Markina, NPJ Quant. Mater. 3, 18 (2018).
- T. Masuda, A. Zheludev, A. Bush et. al., Phys. Rev. Lett. 92, 177201 (2004).
- S.-L. Drechsler, O. Volkova, A. N. Vasiliev et. al., Phys. Rev. Lett. 98, 077202 (2007).
- M. Isobe, E. Ninomiya, A. N. Vasiliev, and Y. Ueda, J. Phys. Soc. Jpn. 71, 1423 (2002).
- S.-L. Drechsler, J. Richter, A. A. Gippius et. al., Europhys. Lett. 73, 83 (2006).
- A. N. Vasiliev, L. A. Ponomarenko, H. Manaka et. al., Phys. Rev. B 64, 024419 (2001).
- A. I. Smirnov, M. N. Popova, A. B. Sushkov et. al., Phys. Rev. B 59, 14546 (1999).
- E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
- J. C. Bonner and M. E. Fisher, Phys. Rev. A 135, 640 (1964).
- O. von Knorring, and T.G. Sahama, Schweiz. Miner. Petrog. 61, 7 (1981).
- S. M. Aksenov, V. S. Mironov, E. Yu. Borovikova et. al., Sol. St. Sci. 63, 16 (2017).
- U. Kolitsch and G. Giester, Am. Miner. 85, 1298 (2000).
- X. Rocquefelte, K. Schwarz, and P. Blaha, Sci. Rep. 2, 759 (2012).
- G. Tunell, E. Posnjak, and C. J. Ksanda, J. Wash. Acad. Sci. 23, 195 (1933).
- G. A. Bain and J. F. Berry, J. Chem. Educ. 85, 532 (2008).
- D.C. Johnston, R.K. Kremer, M. Troyer, et al., Phys. Rev. B, 61, 9558 (2000).
- R. J. Goetsch, V. K. Anand, A. Pandey, and D. C. Johnston, Phys. Rev. B 85, 054517 (2012).
- A. Tari, The Speci c Heat of Matter at Low Temperatures, Imperial College Press (2003).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- G. Kresse and J. Furthmu�ller, Comput. Mater. Sci. 6, 15 (1996).
- G. Kresse and J. Furthmu�ller, Phys. Rev. 54, 11169 (1996).
- A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467(R) (1995).
- V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
- H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and X. G. Gong, Phys. Rev. B 84, 224429 (2011).
- G. Mathew, S. L. L. Silva, A. Jain et. al., Phys. Rev. Res. 2, 043329 (2020).
- M. Wiesniak, V. Vedral, and C. Brukner, New J. Phys. 7, 258 (2005).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					