Noether symmetries and some exact solutions inf(R, T2) Theory
- Авторы: Sharif M.1, Gul M.Z1
- 
							Учреждения: 
							- The University of Lahore
 
- Выпуск: Том 163, № 4 (2023)
- Страницы: 496-502
- Раздел: Статьи
- URL: https://filvestnik.nvsu.ru/0044-4510/article/view/653528
- DOI: https://doi.org/10.31857/S0044451023040065
- EDN: https://elibrary.ru/LRECZQ
- ID: 653528
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
The main objective of this article is to examine some physically viable solutions through the Noether symmetry technique in f ( R, T 2) theory. In order to investigate Noether equations, symmetry generators and conserved quantities, we use a speci c model of this modi ed theory. We nd exact solutions and examine the behavior of various cosmological quantities. It is found the behavior these quantities is consistent with current observations indicating that this theory describes the cosmic accelerated expansion. We conclude that generators of Noether symmetry and conserved quantities exist in this theory.
Об авторах
M. Sharif
The University of Lahore
														Email: jetp@kapitza.ras.ru
				                					                																			                												                								Lahore-54000, Pakistan						
M. Z Gul
The University of Lahore
							Автор, ответственный за переписку.
							Email: jetp@kapitza.ras.ru
				                					                																			                												                								Lahore-54000, Pakistan						
Список литературы
- A.V. Filippenko and A.G. Riess, Phys. Rep. 307, 31 (1998)
- M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, and F. Hoyle, Phys. Rev. D 69, 103501 (2004).
- A.D. Felice and S.R. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
- S. Nojiri and S.D. Odintsov, Phys. Rep. 505, 59 (2011).
- N. Katirci and M. Kavuk, Eur. Phys. J. Plus 129, 163 (2014).
- M. Roshan and F. Shojai, Phys. Rev. D 94, 044002 (2016).
- C.V.R. Board and J.D. Barrow, Phys. Rev. D 96, 123517 (2017).
- S. Bahamonde, M. Marciu, and P.Rudra, Phys. Rev. D 100, 083511 (2019).
- M. Sharif and M.Z. Gul, Phys. Scr. 96, 025002 (2021)
- Phys. Scr. 96, 125007 (2021)
- Chin. J. Phys. 80, 58 (2022).
- M. Sharif and M.Z. Gul, Int. J. Mod. Phys. A 36, 2150004 (2021)
- Universe 7, 154 (2021)
- Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2021)
- Chin. J. Phys. 71, 365 (2021)
- Mod. Phys. Lett. A 37, 2250005 (2022).
- E. Noether, Tramp. Th. Stat, Phys 1, 189 (1918)
- T. Feroze, F.M. Mahomed, and A. Qadir, Nonlinear Dyn. 45, 65 (2006).
- S. Capozziello, M. De Laurentis, and S.D. Odintsov, Eur. Phys. J. C 72, 1434 (2012).
- S. Capozziello, R.D. Ritis, and A.A. Marino, Class. Quantum Gravity 14, 3259 (1997).
- S. Capozziello, G. Marmo, and C.P.Rubano, Int. J. Mod. Phys. D 6, 491 (1997).
- A.K. Sanyal, Phys. Lett. B 524, 177 (2002).
- U. Camci and Y. Kucukakca,: Phys. Rev. D 76, 084023 (2007).
- D. Momeni and H. Gholizade, Int. J. Mod. Phys. D 18, 1 (2009).
- Y. Kucukakca, U. Camci, and I. Semiz, Gen. Relat. Gravit. 44, 1893 (2012).
- S. Basilakos, S. Capozziello, M. De Laurentis, A. Paliathanasis, and M. Tsamparlis, Phys. Rev. D 88, 103526 (2013).
- U. Camci, Eur. Phys. J. C 74, 3201 (2014)
- J. Cosmol. Astropart. Phys. 07, 002 (2014).
- U. Camci and J. Cosmol, J. Cosmol. Astropart. Phys. 2014, 2 (2014).
- U. Camci, A. Yildirim, and I. Basaran, Astropart. Phys. 76, 29 (2016).
- S. Capozziello, S.J.G. Gionti, and D. Vernieri, J. Cosmol. Astropart. Phys. 1601, 015 (2016).
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

