Electrodynamic models magnetized graphene diffraction gratings, based on the solution of integral equations for plasmonic anisotropic structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Two methods have been used to solve the boundary value problem of diffraction of a plane electromagnetic wave on a diffraction grating of graphene strips in the presence of a magnetic field. In solving the obtained integral and paired adder equations, the Galerkin method was used with a basis in the form of Legendre and Hegenbauer polynomials. As a result, systems of linear algebraic equations with fast internal convergence were obtained. All matrix elements of the system are expressed explicitly.

全文:

受限制的访问

作者简介

A. Lerer

Southern Federal University

编辑信件的主要联系方式.
Email: lerer@sfedu.ru
俄罗斯联邦, Zorge St., 5, Rostov-on-Don, 344090

参考

  1. Tamagnone M., Slipchenko T. M., Moldovam C. et al. // Phys. Rev. B. 2018. V. 97. № 24. P. 241410.
  2. Chin M. L., Matschy S., Stawitzki F. et al. // J. Phys. Photonics. 2021. V.3. № 1. P. 01LT01.
  3. Kuzmin D. A., Bychkov I. V., Shavrov V. G. et al. // Nanophotonics. 2018. V. 7. № 3. P. 597. https://doi.org/10.1515/nanoph-2017–0095
  4. Ningning Wang, Linhui Ding, Weihua Wang // Phys. Rev. B. 2023. V. 108. № 8. P. 085406.
  5. Zesen Zhou, Zhilong Gan, Lei Cao // J. Phys. D: Appl. Phys. 2023. V. 56. P. 365104. https:// doi: 10.1088/1361–6463/acda45
  6. Liu Jian-Qiang, Zhou Yu-Xiu, Li Li, Wang Pan, Zayats A. V. // Opt. Express. 2015. V. 23. № . 10. P. 12525. https:// doi: 10.1364/OE.23.012524
  7. Lu Yafeng, Wang Chen, Zhao Shiqiang, Wen Yongzheng. // Frontiers Phys. 2021. V. 8. № 622839. https://doi: 10.3389/fphy.2020.622839
  8. Padmanabhan P., Boubanga-Tombet S., Fukidome H. et al. //Appl. Phys. Lett. 2020. V. 116. № 22. P. 221107. https://doi.org/10.1063/5.0006448
  9. Guo T., Argyropoulos C. J. // Appl. Phys. 2023. V.134. № 5. P. 050901. https://doi.org/10.1063/5.0152664
  10. Лерер А. М., Макеева Г. С., Черепанов В. В. // PЭ. 2021. T. 66. № 6. C. 543.
  11. Лерер А. М., Иванова И. Н., Макеева Г. С., Черепанов В. В. // Оптика и спектроскопия. 2021. Т. 129. № 3. С. 342.
  12. Лерер A. M. // PЭ. 2012. T. 57. № 11. C. 1160.
  13. Wang W. H., Apel S. P., Kinaret J. M.// Phys. Rev. B. 2012. V. 86. № 12. P. 125450.
  14. Hanson G. W. // J. Appl. Phys. 2008. V. 103. № 6. P. 064302.
  15. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматлит, 1963.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Frequency dependences of the relative error of the results of calculating the conductivity σ using the Kubo formula [14] and the approximate formula (1) at B = 0: real (1, 1′) and imaginary parts of σ (2, 2′) at EF = = 0.25 (1, 2) and 0.45 eV (1′, 2′); τ = 1 ps.

下载 (75KB)
3. Fig. 2. Frequency dependences of the reflection coefficients R (a, c) and transmission coefficients T (b, d) at B = 0, 1, 2 and 3 T (numbers on the curves): s-polarization (a, b) and p-polarization of the incident wave (c, d). The characteristics are calculated using the PSU (solid curves) and ODDU (curves with asterisks) methods.

下载 (238KB)
4. Fig. 3. The ratio of the longitudinal and transverse components of the electric field strength on graphene ribbons at f= 0.95 (1), 1.5 (2) and 2 THz (3): s-polarization of the incident wave, (solid curves), p-polarization, (dashed).

下载 (98KB)
5. Fig. 4. Frequency dependences of the reflection coefficient when rotating the plane of incidence at different rotation angles,  = 0, 15, 30 and 45 degrees (numbers on the curves); magnetic field B= 2 T: s-polarization (a) and p-polarization of the incident wave (b).

下载 (110KB)
6. Fig. 5. Frequency dependences of the reflectivity of a DR with a gold film at B= 0 (a) and 2 T (b): s-polarization (1,1′) and p-polarization (2,2′) of the incident wave at a ribbon width of 40 (1,2) and 50 μm (1′,2′). Methods for calculating the SDR (solid curves) and the IRDR (asterisks).

下载 (156KB)

版权所有 © Russian Academy of Sciences, 2024