Nickel oxide epitaxial films and diode structures based on them

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Epitaxial NiO films on LiNbO3 substrates were produced using magnetron sputtering. Optimal conditions for deposition of NiO films to achieve their high crystalline perfection were found. Optical properties of NiO films were studied in the wavelength range of 250...800 nm. The band gap of nickel oxide was determined. Semiconductor diode structures in the form of interdigital Schottky barrier contacts to the epitaxial NiO film were fabricated. The current-voltage characteristics of the diode structures demonstrate low dark currents and the possibility of creating photodetectors for the UV part of the spectrum with a long-wavelength boundary of 340 nm on their basis.

Texto integral

Acesso é fechado

Sobre autores

S. Averin

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Autor responsável pela correspondência
Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

V. Luzanov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

V. Zhitov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

L. Zaharov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

V. Kotov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

M. Temiryazeva

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

E. Mirgorodskaya

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Rússia, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

Bibliografia

  1. Gupta R.K., Hendi A.A., Cavas M. et al. // Phys. E. 2014. V. 56. P. 288.
  2. Choi J.-M., Im S. // Appl. Surface Sci. 2005. V. 244. № 1-4. P. 435.
  3. Steinebach H., Kannan S., Rieth L., Solzbacher F. // Sensors Actuators B: Chem. 2010. V. 151. P. 162.
  4. Sato H., Minami T., Takata S., Yamada T. // Thin Solid Films. 1993. V. 236. № 1-2. P. 27.
  5. Lou X.C., Zhao X.J., He X. // Solar Energy. 2009. V. 83.№ 12. P. 2103.
  6. Shinde V.R., Gujar T.P., Lokhande C.D. et al. // Mater. Chem. Phys. 2006. V. 96. № 2-3. P. 326.
  7. Park S.-W., Choi J.M., Kim E., Im S. // Appl. Surf. Sci. 2005. V. 244. № 1. P. 439.
  8. Ohta H., Hirano M., Nakahara K. et al. // Appl. Phys. Lett. 2003. V. 83. № 5. P. 1029.
  9. Kakehi Y., Nakao S., Satoh K., Kusaka T. // J. Crystal Growth. 2002. V. 237–239. Pt. 1. P. 591.
  10. Lindahl E., Lu J., Ottosson M., Carlsson J.-O. // J. Crystal Growth. 2009. V. 311. № 16. P. 4082.
  11. Wang Y., Ghanbaja J., Boulet P. et al. // Acta Materialia. 2019. V. 164. P. 648.
  12. Ahmed A.A., Devarajan M., Afzal N. // Sensors and Actuators A: Phys. 2017. V. 262. P. 78.
  13. Manjnatra K.N., Paul Sh. // Appl. Surface Sci. 2015. V. 352. P. 10.
  14. Лузанов В.А. // РЭ. 2020. Т. 65. № 12. С. 1206.
  15. Бланк Т.Б., Гольдберг Ю.А. // Физика и техника полупроводников. 2003. Т. 37. № 9. С. 1025.
  16. Lin D.Y., Chen W.L., Lin W.C. et al. // Phys. Stat. Solidi. 2006. V. C-3. № 6. P. 1983.
  17. Surender S., Probakaran K., Pradeep S. et al. // Opt. Mater. 2023. V. 136. Article No. 113462.
  18. Tauc J. // Mater. Res. Bull. 1968. V. 3. № 1. P. 37.
  19. Hadi A.A., Badr B.A., Mahdi R.O., Khashan K.S. // Optic-Int. J. Light and Electron Optics. 2020. V. 219. Article No. 165019.
  20. Averine S.V., Chan Y.C., Lam Y.L. // Solid-State Electron. 2001. V. 45. № 3. P. 441.
  21. Ahmed A.A., Hashim M.R., Abdalrheem R., Rashid M. // J. Alloys Comp. 2019. V. 798. P. 300.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Swing curve for sample 2, NiO epitaxial layer thickness of 300 nm.

Baixar (71KB)
3. Fig. 2. Surface fragment of NiO/LiNbO3 heterostructure (a) and its morphology (b); image obtained with an atomic force microscope.

Baixar (376KB)
4. Fig. 3. Surface fragment of the original LiNbO3 substrate (AFM image); RMS height of irregularities RMS = 0.25 nm.

Baixar (130KB)
5. Fig. 4. Transmission spectra of the investigated samples: 1 - LiNbO3 substrate only, 2-5 - heterostructures NiO film/LiNbO3 substrate with NiO layer of different thickness: d = 300 nm (2) sample 2, d = 320 nm (3) sample 3, d = 380 nm (4) sample 4, d = 525 nm (5) sample 5.

Baixar (78KB)
6. Fig. 5. Graph of (αhν)2 = f (hν) for the determination of Eg in the deposited films, sample 2.

Baixar (60KB)
7. Fig. 6. Diode MPM structure in section: width of NiAu counter-pin contacts and spacing of 10 μm, active diode area 500 × 500 μm2.

Baixar (48KB)
8. Fig. 7. Volt-ampere characteristics of diode MFM structures at different NiO film thicknesses: d = 200 (1), 100 (2) and 50 nm (3).

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024