Microwave destruction of high moor peat: modeling and experimental studies in a quartz reactor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the results of theoretical and experimental studies comparing the thermal degradation of high moor sphagnum peat in the process of pyrolysis (thermolysis) initiated by convenient thermal and microwave exposure. Based on modeling using the commercial software package CST Studio Suite, reactor designs have been developed that allow for a correct comparison of these processes under identical conditions. Comparative experiments conducted on the basis of reactors with various thermal sources have demonstrated the advantages of microwave pyrolysis, which allows for “instantaneous” and volumetric heating of the product and its deeper processing with high energy efficiency. The results of peat processing under different thermal effects and the yield of pyrolysis reaction products are discussed.

Full Text

Restricted Access

About the authors

S. A. Ananicheva

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS); National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: bulanova@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod; 603022 Nizhny Novgorod

T. O. Krapivnitckaia

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: kto@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod

A. B. Alyeva

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: a.alyeva@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod

A. A. Vikharev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: alvikharev@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod

M. Y. Glyavin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: glyavin@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod

A. N. Denisenko

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: androu@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod

N. Y. Peskov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS); National Research Lobachevsky State University of Nizhny Novgorod

Email: peskov@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod; 603022 Nizhny Novgorod

S. V. Zelentsov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS); National Research Lobachevsky State University of Nizhny Novgorod

Email: zelentsov@chem.unn.ru
Russian Federation, 603950 Nizhny Novgorod; 603022 Nizhny Novgorod

A. A. Sachkova

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS); National Research Lobachevsky State University of Nizhny Novgorod

Email: a.sachkova@ipfran.ru
Russian Federation, 603950 Nizhny Novgorod; 603022 Nizhny Novgorod

References

  1. Leifeld J., Menichetti L. // Nature Communications. 2018. V. 9. № 1. P. 1071. https://doi.org/10.1038/s41467-018-03406-6
  2. Wen Y., Wang S., Mu W., Yang W., Jönsson P.G. // Fuel. 2020. V. 277. P. 118173. https://doi.org/10.1016/j.fuel.2020.118173
  3. Исламова С.И., Тимофеева С.С., Хаматгалимов А.Р., Ермолаев Д.В. // ХТТ. 2020. № 3. С. 32. [Solid Fuel Chem. 2020. № 3. V. 54. P. 154. https://doi.org/10.3103/S0361521920030040]
  4. Yang J., Chen H., Zhao W., Zhou J. // Journal of Analytical and Applied Pyrolysis. 2016. V. 117. P. 296. https://doi.org/10.1016/j.jaap.2015.11.002
  5. Sutcu H. // Korean J. Chem. Engineer. 2007. V. 24. № 5. P. 736. https://doi.org/10.1007/s11814-007-0035-5
  6. Забелкин С.А., Макаров А.А., Земсков И.Г., Грачев А.Н., Башкиров В.Н. // Вестник Казанского технологического университета. 2013. Т. 16. № 21. С. 115.
  7. Юсифзаде А.А., Дадаева Г.Ч. // Евразийский Союз Ученых. 2018. № 5–2. С. 50.
  8. Забелкин С.А., Грачев А.Н., Нурияхметов Р.А., Гильфанов М.Ф., Варфоломеев М.А. // Вестник технологического университета. 2017. Т. 20. № 12. С. 50.
  9. Gartshore A., Kidd M., Joshi L.T. // Biosensors (Basel). 2021. V. 11. № 4. P. 96. https://doi.org/10.3390/bios11040096
  10. Gopalakrishnan K., Adhikari A., Pallipamu N., Singh M., Nusrat T., Gaddam S., Samaddar P., Rajagopal A., Cherukuri A.S.S., Yadav A.A. // Electronics. 2023. V. 12. № 5. P. 1101. https://doi.org/10.3390/electronics12051101
  11. Gautam U., Ehsan Asgar M., Singh K. // Materials Today: Proceedings. 2023. V. 78. № 3. P. 426. https://doi.org/10.1016/j.matpr.2022.10.249
  12. Ponomarenko A.A., Tameev A., Shevchenko V. // Russian Chemical Reviews. 2018. V. 87. № 10. P. 923. https://doi.org/10.1070/rcr4790
  13. Kubrakova I.V. // Russian Chemical Reviews. 2002. V. 71. № 4. P. 283. https://doi.org/10.1070/rc2002v071n04abeh000699
  14. Allende S., Brodie G., Jacob M.V. // Environmental Research. 2023. V. 226. P. 115619. https://doi.org/10.1016/j.envres.2023.115619.
  15. Yin C. // Bioresource Technology. 2012. V. 120. P. 273. https://doi.org/10.1016/j.biortech.2012.06.016.
  16. Tabakaev R., Kalinich I., Mostovshchikov A., Dimitryuk I., Asilbekov A., Ibraeva K., Gaidabrus M., Shanenkov I., Rudmin M., Yazykov N. // Biomass Conversion and Biorefinery. 2023. V. 14. P. 26193. https://doi.org/10.1007/s13399-023-04686-9
  17. Песков Н.Ю., Крапивницкая Т.О., Соболев Д.И., Глявин М.Ю., Денисенко А.Н. Комплекс для микроволнового пиролиза органических материалов. Патент РФ № 2737007 // Б.И. 2020. № 33.
  18. Крапивницкая Т.О., Богдашов А.А., Денисенко А.Н., Глявин М.Ю., Песков Н.Ю., Семенычева Л.Л., Ворожцов Д.Л. // Известия ВУЗов. Прикладная химия и биотехнология. 2019. Т. 9. № 4. С. 750. [Proceedings of Universities Applied Chemistry and Biotechnology. 2019. V. 9. № 4. Р. 750. https://doi.org/10.21285/2227-2925-2019-9-4-750-758]
  19. Крапивницкая Т.О., Буланова С.А., Сорокин А.А., Денисенко А.Н., Ворожцов Д.Л., Семенычева Л.Л. // Известия ВУЗов. Прикладная химия и биотехнология. 2020. Т. 10. № 2. С. 339. [Proceedings of Universities Applied Chemistry and Biotechnology. 2020. V. 10. № 2. P. 339. https://doi.org/10.21285/2227-2925-2020-10-2-339-348]
  20. Krapivnitckaia T., Ananicheva S., Alyeva A., Denisenko A., Glyavin M., Peskov N., Sobolev D., Zelentsov S. // Processes. 2023. V. 11. P. 1924. https://doi.org/10.3390/pr12010092
  21. Chambers F., Beilman D., Yu Z. // Mires and Peat. 2010. V. 7. P. 1. http://www.mires-and-peat.net
  22. Гущин В.Н., Васильев В.А., Чернышов Е.А., Романов И.Д., Романова Е.А., Романов А.Д. // Труды НГТУ им. Р.Е. Алексеева. 2012. № 1. С. 94.
  23. Тимербаев Н.Ф., Сафин Р.Г., Хуснуллин И.И. // Вестник Казанского технологического университета. 2011. № 9. С. 51.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of three-dimensional modeling of heat propagation processes in a pyrolysis reactor with heat transfer from the wall (a) and microwave exposure (b). Instantaneous temperature distribution in the cross section of the reactor (Wurtz reaction flask) after 15 min of irradiation is shown (the used logarithmic temperature scale is shown on the right).

Download (250KB)
3. Fig. 2. Flow chart of thermal and microwave pyrolysis units: 1 — heat source (1.1 — heating element, 1.2 — magnetron); 2 — microwave radiation shielding chamber; 3 — quartz reaction vessel; 4 — peat sample; 5 — liquid settler; 6 — gas meter, 7 — Richter absorber; 8 — gas sampler; 9 — pressure gauge; 10 — pump; 11 — oscilloscope; 12 — high-voltage power source; 13 — computer control system.

Download (315KB)
4. Fig. 3. Heat maps taken with a thermal imager in experiments on peat destruction in a reaction vessel with thermal (a) and microwave (b) heating under reduced pressure.

Download (163KB)

Copyright (c) 2025 Russian Academy of Sciences