Прогноз геомагнитной и солнечной активности на основе макроскопических нелокальных корреляций
- Авторы: Коротаев С.М.1, Сердюк В.О.1, Киктенко Е.О.1, Попова И.В.1, Буднев Н.М.2, Горохов Ю.В.3
- 
							Учреждения: 
							- Институт физики Земли им. О.Ю. Шмидта РАН
- Иркутский государственный университет
- Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН
 
- Выпуск: Том 65, № 2 (2025)
- Страницы: 229-240
- Раздел: Статьи
- URL: https://filvestnik.nvsu.ru/0016-7940/article/view/683628
- DOI: https://doi.org/10.31857/S0016794025020084
- EDN: https://elibrary.ru/CXQHGW
- ID: 683628
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Серия длительных экспериментов по изучению макроскопических нелокальных корреляций между случайными диссипативными гелиогеофизическими процессами и пробными процессами в детекторах выявила важные свойства макроскопической запутанности, предсказанные абсорбционной электродинамикой. Эти корреляции имеют запаздывающую и опережающую компоненты. Опережающей корреляции отвечает обратно-временная причинность (в силу случайности процессов это не приводит к общеизвестным парадоксам). Доминирующими глобальными процессами-источниками, вызывающими отклик детекторов, оказались солнечная, а также геомагнитная активность. Опережающие корреляции дают возможность прогноза случайных компонентов этих процессов. Продемонстрирована практическая реализуемость таких прогнозов с заблаговременностью несколько месяцев и с точностью, достаточной для всех практических целей.
Полный текст
 
												
	                        Об авторах
С. М. Коротаев
Институт физики Земли им. О.Ю. Шмидта РАН
							Автор, ответственный за переписку.
							Email: korotaev@gemrc.ru
				                					                																			                								
Центр геоэлектромагнитных исследований
Россия, Москва, ТроицкВ. О. Сердюк
Институт физики Земли им. О.Ю. Шмидта РАН
														Email: korotaev@gemrc.ru
				                					                																			                								
Центр геоэлектромагнитных исследований
Россия, Москва, ТроицкЕ. О. Киктенко
Институт физики Земли им. О.Ю. Шмидта РАН
														Email: korotaev@gemrc.ru
				                					                																			                								
Центр геоэлектромагнитных исследований
Россия, Москва, ТроицкИ. В. Попова
Институт физики Земли им. О.Ю. Шмидта РАН
														Email: korotaev@gemrc.ru
				                					                																			                								
Центр геоэлектромагнитных исследований
Россия, Москва, ТроицкН. М. Буднев
Иркутский государственный университет
														Email: korotaev@gemrc.ru
				                					                																			                												                	Россия, 							Иркутск						
Ю. В. Горохов
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН
														Email: korotaev@gemrc.ru
				                					                																			                												                	Россия, 							Москва, Троицк						
Список литературы
- Коротаев С.М., Буднев Н.М., Сердюк В.О., Зурбанов В.Л., Миргазов Р.Р., Шнеер В.С., Мачинин В.А., Киктенко Е.О., Бузин В.Б., Панфилов А.И. Новые результаты мониторинга вертикальной компоненты электрического поля в озере Байкал на базе поверхность−дно // Геомагнетизм и аэрономия. Т. 55. № 3. С. 406−418. 2015. https://doi.org/10.7868/S001679401502011X
- Коротаев С.М., Буднев Н.М., Сердюк В.О., Киктенко Е.О., Орехова Д.А. Новые результаты Байкальского эксперимента по прогностическому эффекту макроскопических нелокальных корреляций // Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки. № 4. С. 56−72. 2019. https://doi.org/10.18698/1812-3368-2019-4-56-72
- Коротаев С.М., Морозов А.Н. Нелокальность диссипативных процессов – причинность и время. М.: Физматлит, 216 с. 2018.
- Коротаев С.М., Сердюк В.О., Горохов Ю.В. Прогноз геомагнитной и солнечной активности на основе нелокальных корреляций // ДАН. Т. 415. № 6. С. 814−817. 2007.
- Коротаев С.М., Сердюк В.О., Попова И.В., Горохов Ю.В., Киктенко Е.О., Орехова Д.А. Эксперимент по долгосрочному прогнозированию геомагнитной активности на основе нелокальных корреляций // Геомагнетизм и аэрономия. Т. 64. № 1. С. 141−148. 2024. https://doi.org/10.31857/S0016794024010144
- Amico L., Fazio R., Osterloch A., Vedral V. Entanglement in many-body systems // Rev. Mod. Phys. V. 80. № 2. P. 517−576. 2008. https://doi.org/10.1103/RevModPhys.80.517
- Calsamiglia J., Hartmann L., Dür W., Briegel H.-J. Spin gases: quantum entanglement driven by classical kinematics // Phys. Rev. Lett. V. 95. № 18. ID 180502. 2005. https://doi.org/10.1103/PhysRevLett.95.180502
- Cramer J.G. Generalized absorber theory and Einstein-Podolsky-Rosen paradox // Phys. Rev. D. V. 22. № 2. P. 362–376. 1980. https://doi.org/10.1103/PhysRevD.22.362
- Cramer J.G. The transactional interpretation of quantum mechanics // Rev. Mod. Phys. V. 58. № 3. P. 647−687. 1986. https://doi.org/10.1103/RevModPhys.58.647
- Elitzur A.S., Dolev S. Is there more to T? / The Nature of Time: Geometry, Physics and Perception. Eds. R. Buccery, M. Saniga, W.M. Stuckey. Dordrecht: Springer. P. 297−306. 2003. https://doi.org/10.1007/978-94-010-0155-7_31
- Home D., Majumdar A.S. Incompatibility between quantum mechanics and classical realism in the strong macroscopic limit // Phys. Rev. A. V. 52. № 6. P. 4959−4962. 1995. https://doi.org/10.1103/PhysRevA.52.4959
- Hoyle F., Narlikar J.V. Cosmology and action-at-a-distance electrodynamics // Rev. Mod. Phys. V. 67. № 1. P. 113–155. 1995. https://doi.org/10.1103/RevModPhys.67.113
- Korotaev S.M. Causality and Reversibility in Irreversible Time. Irvine, CA: Scientific Research Publishing, 130 p. 2011.
- Korotaev S., Budnev N., Serdyuk V., Kiktenko E., Gorohov J., Zurbanov V. Macroscopic entanglement and time reversal causality by data of the Baikal experiment // J. Phys. Conf. Ser. V. 1051. ID 012019. 2018a. https://doi.org/10.1088/1742-6596/1051/1/012019
- Korotaev S., Budnev N., Serdyuk V., Kiktenko E., Orekhova D., Gorohov J. Macroscopic nonlocal correlations in reverse time by data of the Baikal Experiment // J. Phys. Conf. Ser. V. 1557. ID 012026. 2020. https://doi.org/10.1088/1742-6596/1557/1/012026
- Korotaev S., Budnev N., Serdyuk V., Kiktenko E., Orekhova D., Gorohov J. Macroscopic nonlocal correlations by new data of the Baikal Experiment // J. Phys. Conf. Ser. V. 2197. ID 012019. 2022. https://doi.org/10.1088/1742-6596/2197/1/012019
- Korotaev S.M., Gorohov J.V., Serdyuk V.O., Novysh A.V. Response of macroscopic nonlocal correlation detector to a phase transition // J. Phys. Conf. Ser. V. 1348. ID 012041. 2019. https://doi.org/10.1088/1742-6596/1348/1/012041
- Korotaev S.M., Morozov A.N., Serdyuk V.O., Nalivayko V.I., Novysh A.V., Gaidash S.P., Gorohov J.V., Pulinets S.A., Kanonidi Kh.D. Manifestation of macroscopic nonlocality in the processes of solar and geomagnetic activity // Vestnik of BMSTU. Special Issue. P. 173−185. 2005.
- Korotaev S.M., Serdyuk V.O., Budnev N.M. Advanced response of the Baikal macroscopic nonlocal correlation detector to the heliogeophysical processes / Unified Field Mechanics II. Eds. R.L. Amoroso, L.H. Kauffman, P. Rowlands, G. Albertini. London: World Scientific. P. 375–380. 2018b. https://doi.org/10.1142/9789813232044_0035
- Kordas G., Wimberger S., Witthaut D. Dissipation induced macroscopic entanglement in an open optical lattice // Europhys. Lett. V. 100. № 3. ID 30007. 2012. https://doi.org/10.1209/0295-5075/100/30007
- Laforest M., Baugh J., Laflamme R. Time-reversal formalism applied to bipartite entanglement: theoretical and experimental exploration // Phys. Rev. A. V. 73. № 3. ID 032323. 2006. https://doi.org/10.1103/PhysRevA.73.032323
- Lean J.L., Brueckner G.E. Intermediate-term solar periodicities: 100–500 days // Astrophys. J. V. 337. P. 568−578. 1989. https://doi.org/10.1086/167124
- Lee S.-S.B., Park J., Sim H.-S. Macroscopic quantum entanglement of a Kondo Cloud at finite temperature // Phys. Rev. Lett. V. 114. № 5. ID 057203. 2015. https://doi.org/10.1103/PhysRevLett.114.057203
- Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y., Pirandola S., Rozema L.A., Darabi A., Soudagar Y., Shalm L.K., Steinberg A.M. Closed timelike curves via postselection: theory and experimental demonstration // Phys. Rev. Lett. V. 106. № 4. ID 040403. 2011. https://doi.org/10.1103/PhysRevLett.106.040403
- Ma X.-S., Zotter S., Kofler J., Ursin R., Jennewien T., Brukner Č., Zeilinger A. Experimental delayed-choice entanglement swapping // Nat. Phys. V. 8. P. 479−485. 2012. https://doi.org/10.1038/nphys2294
- Maldacena J., Susskind L. Cool horizons for entangled black holes // Progress of Physics. V. 61. № 9. P. 781−811. 2013. https://doi.org/10.1002/prop.201300020
- Megidish E., Halevy A., Shacham T., Dvir T., Dovrat L., Eisenberg H.S. Entanglement swapping between photons that have never coexisted // Phys. Rev. Lett. V. 110. № 21. ID 210403. 2013. https://doi.org/10.1103/PhysRevLett.110.210403
- Reid M.D., He Q.Y., Drummond P.D. Entanglement and nonlocality in multi-particle systems // Frontiers of Physics. V. 7. № 1. P. 72−85. 2012. https://doi.org/10.1007/s11467-011-0233-9
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 















