Modeling the structural elements of broadband low-frequency sound absorbers for the transport vehicles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents an approach to a qualitative change, by 12 to 17 dB and more, of the low-frequency sound absorption inside and outside the transport vehicles. In the approach, the problems are solved of designing the composites of polymer matrixes with inorganic and biopolymer polydisperse phases, and of modeling, measuring and analyzing the sound-absorbing properties of thin mono-/bilayer structural elements based on the new composites. Validity of the approach is confirmed by correctness of the physical, chemical and measurement methods used, and by the results of experimental studying the test-models of the composites. These research results can be used in the current developing and prospective designing the aircraft for various purposes, and other types of transport vehicles.

全文:

受限制的访问

作者简介

E. Karpov

Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences; Moscow Polytechnic University

编辑信件的主要联系方式.
Email: evkarpov@mail.ru

Corresponding Member of the RAS

俄罗斯联邦, Novosibirsk; Moscow

V. Goverdovskiy

Moscow Polytechnic University

Email: vng_scien@yahoo.com
俄罗斯联邦, Moscow

Yu. Brovkina

Moscow Polytechnic University

Email: yulbrovkina@yandex.ru
俄罗斯联邦, Moscow

M. Mikhailenko

Moscow Polytechnic University; Institute of Solid Chemistry and Mechanochemistry of Siberian Branch of Russian Academy of Sciences

Email: mikhailenkoma79@gmail.com
俄罗斯联邦, Moscow; Novosibirsk

F. Gorbunov

Institute of Solid Chemistry and Mechanochemistry of Siberian Branch of Russian Academy of Sciences

Email: f.gorbunov@corp.nstu.ru
俄罗斯联邦, Novosibirsk

参考

  1. Environmental protection. ICAO Standards and Recommended Practices. V. 1. Aircraft noise. 2017.
  2. Шумовые характеристики пассажирских и грузовых самолетов. 2021. – https://eco-profi.info/index.php/akustika/akustika-samolet.html
  3. Мунин А.Г. Авиационная акустика. М.: Машиностроение, 1986.
  4. Шульдешов Е.М. Звукоизоляционные свойства авиационных теплозвукоизоляционных материалов // Труды ВИАМ. Полимерные материалы. 2019. Т. 12 (84). С. 37–45.
  5. Spakovszky Z.S. Advanced low-noise aircraft configurations and their assessment: past, present, and future // CEAS Aeronautical Journal. 2019. № 10. P. 137–157.
  6. Aerospace insulation materials. – Available: www.custommaterials.com.
  7. Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies. A review // Applied Materialstoday. 2021. V. 24. 101141.
  8. Вешкин Е.А., Сатдинов Р.А., Баранников А.А. Современные материалы для салона самолета // Труды ВИАМ. Электронный научный журнал. 2021. https://dx.doi.org/10.18577/2307-6046-2021-0-9-33-42
  9. Huang S., Li Y., Zhu J., Tsai D.P. Sound-absorbing materials // Physical Review Applied. 2023. 20. 010501.
  10. Lee C.-M., Goverdovskiy V.N., Sukhinin S.V., Konstantinov A.P., Trilis A.V., Yurkovskiy V.S. Phonon crystals as elements of the broadband vibration and noise protection systems / Proc. International Forum on Strategy Technology (IFOST2017), Ulsan, Korea, 31 May-02 June, 2017.
  11. Барабанов В.Г., Биспен Т.А., Молдавский Д. Д. и др. / В кн. Физико-химические аспекты предельных состояний и структурных превращений в сплошных средах, материалах и технических системах, под ред. Ю. В. Петрова. 2-й вып. СПб: Политехника, 2018. С. 119–123, 138–144.
  12. Молдавский Д.Д., Говердовский В.Н., Биспен Т.А., Бардаханов С.П., Ли Ч.-М. Способ изготовления шумопоглощающего материала // Патент РФ № 2745020. Бюл. № 8. Опубл. 18.03.2021.
  13. Polyboyarov V.A., Gorbunov F.K., Voloskova E.V. Modification of the Rubberlike Polymers with the Nanodispersions. Lambert Academic Publishing (Hindawi), 2014.
  14. Scien Co., Ltd.: Methods and products. – Available: www.scien.co.kr.
  15. ISO 10534. Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes.
  16. Lee C.-M., Xu Y. A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials // J. Sound and Vibration. 2009. V. 326. P. 290–301.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Micrography (dark field method) of the structure of test samples of composite elements made of foamed materials, with matrices of different morphology (dark tone) and different fillers (light tone): (a) – CaCO3, (b) – Cu2CO3(OH)2.

下载 (92KB)
3. Fig. 2. Test samples of composite elements: a – with a combined inorganic (SiO2) and organic (rice chaff) filler, b – with an increased content of organic filler.

下载 (164KB)
4. Fig. 3. System for analyzing the effectiveness of test samples of noise absorbers for various combinations of composite elements. Block diagram of ASR measurement and analysis.

下载 (254KB)
5. Fig. 4. Noise absorption efficiency of elastic elements: single-layer commercial (PEM, VEM), single-layer composite (PKM, VKM, G17) and two-layer (G17-PEM1, G17-VEM2).

下载 (96KB)

版权所有 © Russian Academy of Sciences, 2025