Удаление сингулярности поля напряжений для задачи Вилльямса (1952) на основе неевклидовой модели сплошной среды

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается сингулярное решение для поля упругих напряжений в задаче Вилльямса о равновесии пластин с угловыми вырезами. Построена схема минимального расширения классической модели упругой сплошной среды на пути отказа от условия совместности Сен-Венана для деформаций, что приводит к неевклидовой модели сплошной среды. В рамках этой модели показано, что поле полных напряжений не содержит сингулярности для всех углов выреза.

Об авторах

М. А. Гузев

Институт прикладной математики Дальневосточного отделения Российской академии наук; Пермский национальный исследовательский политехнический университет

Автор, ответственный за переписку.
Email: guzev@iam.dvo.ru

Академик РАН

Россия, Владивосток; Пермь

Список литературы

  1. Williams M.L. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension // J. Applied Mechanics. 1952. V. 19 (4). P. 526–528. https://authors.library.caltech.edu/records/2zph7-ee089
  2. Barber J.R. Wedge Problems. In Elasticity. Part of the book series: Solid Mechanics and Its Applications. V. 172. Dordrecht: Springer, 2010. P. 149–170. https://doi.org/10.1007/978-90-481-3809-8_11
  3. Pan W., Cheng C., Wang F., Hu Z., Li J. Determination of singular and higher order non-singular stress for angularly heterogeneous material notch 292 // Engineering Fracture Mechanics. 2023. 109592. https://doi.org/10.1016/j.engfracmech.2023.109592
  4. Sinclair G.B. Stress Singularities in Classical Elasticity—I: Removal, Interpretation and Analysis // Applied Mechanics Reviews. 2004. V. 57(4). P. 251–297. http://dx.doi.org/10.1115/1.1762503
  5. Мясников В.П., Гузев М.А. Геометрическая модель внутренних самоуравновешенных напряжений в твердых телах // ДАН. 2001. Т. 380. № 5. С. 627-629.
  6. Годунов С.К., Роменский Е. И. Элементы механики сплошных сред и законы сохранения. Новосибирск: Научная книга, ١٩٩٨. 280 c.
  7. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005. 584 с.
  8. Гузев М.А. Структура кинематического и силового поля в Римановой модели сплошной среды // ПМТФ. 2011. Т. 52. № 5. С. 39–48.
  9. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024