Interleukin-2 and Oncolytic Virotherapy: A New Perspective in Cancer Therapy


Цитировать

Полный текст

Аннотация

By triggering immune responses in malignancies that have generally been linked to poor outcomes, immunotherapy has recently shown effectiveness. On the other hand, tumors provide an environment for cells that influence the body's immunity against cancer. Malignant cells also express large amounts of soluble or membrane-bound ligands and immunosuppressive receptors. In this regard, the combination of oncolytic viruses with pro-inflammatory or inflammatory cytokines, including IL-2, can be a potential therapy for some malignancies. Indeed, oncolytic viruses cause the death of cancerous cells and destroy the tumor microenvironment. They result in the local release of threat signals and antigens associated with tumors. As a result, it causes lymphocyte activity and the accumulation of antigenpresenting cells which causes them to accumulate in the tumor environment and release cytokines and chemokines. In this study, we reviewed the functions of IL-2 as a crucial type of inflammatory cytokine in triggering immune responses, as well as the effect of its release and increased expression following combination therapy with oncolytic viruses in the process of malignant progression, as an essential therapeutic approach that should be taken into consideration going forward.

Об авторах

Parisa Shiri Aghbash

Immunology Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Reyhaneh Rasizadeh

Immunology Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Amir Yari

Immunology Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Shiva Lahouti

Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Habib MotieGhader

Department of Biology, Tabriz Branch, Islamic Azad University

Email: info@benthamscience.net

Javid Nahand

Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Taher Entezari-Maleki

Department of Clinical Pharmacy, Faculty of Pharmacy,, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Hossein Baghi

Immunology Research Center, Tabriz University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Yousefi, H.; Yuan, J.; Keshavarz-Fathi, M.; Murphy, J.F.; Rezaei, N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol., 2017, 13(10), 1001-1015. doi: 10.1080/1744666X.2017.1366315 PMID: 28795649
  2. Leonard, W.J.; Depper, J.M.; Crabtree, G.R.; Rudikoff, S.; Pumphrey, J.; Robb, R.J.; Krönke, M.; Svetlik, P.B.; Peffer, N.J.; Waldmann, T.A.; Greene, W.C. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature, 1984, 311(5987), 626-631. doi: 10.1038/311626a0 PMID: 6090948
  3. Choudhry, H. The effects of interleukin-2 on immune response regulation. Math. Med. Biol., 2018, 35(1), 79-119.
  4. Waters, R.S.; Justin, S.A.P. SunPil, H.; Bibiana, B.; Tomas, G. The effects of interleukin-2 on immune response regulation. Math. Med. Biol., 2018, 35(1), 79-119.
  5. (a) Bai, F.; Niu, Z.; Tian, H.; Li, S.; Lv, Z.; Zhang, T. et al. Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunology Letters, 2014, 159(1-2), 36-46.; (b) Takehara, Y. et al., Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma. Clin. Immunol., 2013, 149(1), p. 1-10.
  6. Aghbash, P.S.; Nima, H.; Javid, S.N.; Ali, S. Mohammad, Y.M.; Abouzar, B.; Hossein B.B. The role of Th17 cells in viral infections. Int. Immunopharmacol., 2021, 91, 107331. doi: 10.1016/j.intimp.2020.107331 PMID: 33418239
  7. Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer, 2019, 120(1), 6-15. doi: 10.1038/s41416-018-0328-y PMID: 30413827
  8. Ren, G.; Tian, G.; Liu, Y.; He, J.; Gao, X.; Yu, Y.; Liu, X.; Zhang, X.; Sun, T.; Liu, S.; Yin, J.; Li, D. Recombinant Newcastle disease virus encoding IL-12 and/or IL-2 as potential candidate for hepatoma carcinoma therapy. Technol. Cancer Res. Treat., 2016, 15(5), NP83-NP94. doi: 10.1177/1533034615601521 PMID: 26303327
  9. McDermott, D.F.; Atkins, M.B. Application of IL-2 and other cytokines in renal cancer. Expert Opin. Biol. Ther., 2004, 4(4), 455-468. doi: 10.1517/14712598.4.4.455 PMID: 15102596
  10. Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology, 2016, 5(6), e1163462. doi: 10.1080/2162402X.2016.1163462 PMID: 27471638
  11. Moran, M.; Nickens, D.; Adcock, K.; Bennetts, M.; Desscan, A.; Charnley, N.; Fife, K. Sunitinib for metastatic renal cell carcinoma: A systematic review and meta-analysis of real-world and clinical trials data. Target. Oncol., 2019, 14(4), 405-416. doi: 10.1007/s11523-019-00653-5 PMID: 31301015
  12. Fyfe, G.; Fisher, R.I.; Rosenberg, S.A.; Sznol, M.; Parkinson, D.R.; Louie, A.C. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol., 1995, 13(3), 688-696. doi: 10.1200/JCO.1995.13.3.688 PMID: 7884429
  13. Skrombolas, D.; Frelinger, J.G. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev. Clin. Immunol., 2014, 10(2), 207-217. doi: 10.1586/1744666X.2014.875856 PMID: 24410537
  14. Shevach, E.M. Application of IL-2 therapy to target T regulatory cell function. Trends Immunol., 2012, 33(12), 626-632. doi: 10.1016/j.it.2012.07.007 PMID: 22951308
  15. Den Otter, W.; Jacobs, J.J.L.; Battermann, J.J.; Hordijk, G.J.; Krastev, Z.; Moiseeva, E.V.; Stewart, R.J.E.; Ziekman, P.G.P.M.; Koten, J.W. Local therapy of cancer with free IL-2. Cancer Immunol. Immunother., 2008, 57(7), 931-950. doi: 10.1007/s00262-008-0455-z PMID: 18256831
  16. Bell, C.J.M.; Sun, Y.; Nowak, U.M.; Clark, J.; Howlett, S.; Pekalski, M.L.; Yang, X.; Ast, O.; Waldhauer, I.; Freimoser-Grundschober, A.; Moessner, E.; Umana, P.; Klein, C.; Hosse, R.J.; Wicker, L.S.; Peterson, L.B. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J. Autoimmun., 2015, 56, 66-80. doi: 10.1016/j.jaut.2014.10.002 PMID: 25457307
  17. Chulpanova, D.S.; Solovyeva, V.V.; James, V.; Arkhipova, S.S.; Gomzikova, M.O.; Garanina, E.E.; Akhmetzyanova, E.R.; Tazetdinova, L.G.; Khaiboullina, S.F.; Rizvanov, A.A. Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering, 2020, 7(2), 59. doi: 10.3390/bioengineering7020059 PMID: 32560387
  18. Liu, Z.; Ge, Y.; Wang, H.; Ma, C.; Feist, M.; Ju, S.; Guo, Z.S.; Bartlett, D.L. Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2. Nat. Commun., 2018, 9(1), 4682. doi: 10.1038/s41467-018-06954-z PMID: 30410056
  19. Pol, J.G.; Lévesque, S.; Workenhe, S.T.; Gujar, S.; Le Boeuf, F.; Clements, D.R.; Fahrner, J.E.; Fend, L.; Bell, J.C.; Mossman, K.L.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. OncoImmunology, 2018, 7(12), e1503032. doi: 10.1080/2162402X.2018.1503032 PMID: 30524901
  20. Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to be noticed: Epigenetic regulation of immunogenic cell death for cancer immunotherapy. Front. Immunol., 2018, 9, 654. doi: 10.3389/fimmu.2018.00654 PMID: 29666625
  21. Harrington, K.; Freeman, D.J.; Kelly, B.; Harper, J.; Soria, J.C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov., 2019, 18(9), 689-706. doi: 10.1038/s41573-019-0029-0 PMID: 31292532
  22. Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med., 2016, 14(1), 73. doi: 10.1186/s12916-016-0623-5 PMID: 27151159
  23. Feist, M.; Zhu, Z.; Dai, E.; Ma, C.; Liu, Z.; Giehl, E.; Ravindranathan, R.; Kowalsky, S.J.; Obermajer, N.; Kammula, U.S.; Lee, A.J.H.; Lotze, M.T.; Guo, Z.S.; Bartlett, D.L. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther., 2021, 28(1-2), 98-111. doi: 10.1038/s41417-020-0189-4 PMID: 32632271
  24. Suryawanashi, Y.R.; Zhang, T.; Woyczesczyk, H.M.; Christie, J.; Byers, E.; Kohler, S.; Eversole, R.; Mackenzie, C.; Essani, K. T-independent response mediated by oncolytic tanapoxvirus recombinants expressing interleukin-2 and monocyte chemoattractant protein-1 suppresses human triple negative breast tumors. Med. Oncol., 2017, 34(6), 112. doi: 10.1007/s12032-017-0973-7 PMID: 28466296
  25. Matsuda, M.; Nimura, K.; Shimbo, T.; Hamasaki, T.; Yamamoto, T.; Matsumura, A.; Kaneda, Y. Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma. J. Neurooncol., 2011, 103(1), 19-31. doi: 10.1007/s11060-010-0355-x PMID: 20730616
  26. Havunen, R.; Santos, J.M.; Sorsa, S.; Rantapero, T.; Lumen, D.; Siurala, M.; Airaksinen, A.J.; Cervera-Carrascon, V.; Tähtinen, S.; Kanerva, A.; Hemminki, A. Abscopal effect in non-injected tumors achieved with cytokine-armed oncolytic adenovirus. Mol. Ther. Oncolytics, 2018, 11, 109-121. doi: 10.1016/j.omto.2018.10.005 PMID: 30569015
  27. Dummer, R.; Rochlitz, C.; Velu, T.; Acres, B.; Limacher, J.M.; Bleuzen, P.; Lacoste, G.; Slos, P.; Romero, P.; Urosevic, M. Intralesional adenovirus-mediated interleukin-2 gene transfer for advanced solid cancers and melanoma. Mol. Ther., 2008, 16(5), 985-994. doi: 10.1038/mt.2008.32 PMID: 18388930
  28. Trudel, S.; Trachtenberg, J.; Toi, A.; Sweet, J.; Hua, Li Z.; Jewett, M.; Tshilias, J.; Zhuang, L.H.; Hitt, M.; Wan, Y.; Gauldie, J.; Graham, F.L.; Dancey, J.; Keith Stewart, A. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther., 2003, 10(10), 755-763. doi: 10.1038/sj.cgt.7700626 PMID: 14502228
  29. Pol, J.G.; Caudana, P.; Paillet, J.; Piaggio, E.; Kroemer, G. Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med., 2020, 217(1), e20191247. doi: 10.1084/jem.20191247 PMID: 31611250
  30. Pol, J.G.; Workenhe, S.T.; Konda, P.; Gujar, S.; Kroemer, G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev., 2020, 56, 4-27. doi: 10.1016/j.cytogfr.2020.10.007 PMID: 33183957
  31. Cervera-Carrascon, V.; Havunen, R.; Hemminki, A. Oncolytic adenoviruses: A game changer approach in the battle between cancer and the immune system. Expert Opin. Biol. Ther., 2019, 19(5), 443-455. doi: 10.1080/14712598.2019.1595582 PMID: 30905206
  32. Santos, J.M.; Havunen, R.; Siurala, M.; Cervera-Carrascon, V.; Tähtinen, S.; Sorsa, S.; Anttila, M.; Karell, P.; Kanerva, A.; Hemminki, A. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int. J. Cancer, 2017, 141(7), 1458-1468. doi: 10.1002/ijc.30839 PMID: 28614908
  33. Watanabe, N.; McKenna, M.K.; Rosewell Shaw, A.; Suzuki, M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol. Ther., 2021, 29(2), 505-520. doi: 10.1016/j.ymthe.2020.10.023 PMID: 33130314
  34. Lawler, S.E.; Speranza, M.C.; Cho, C.F.; Chiocca, E.A. Oncolytic viruses in cancer treatment: A review. JAMA Oncol., 2017, 3(6), 841-849. doi: 10.1001/jamaoncol.2016.2064 PMID: 27441411
  35. Schirrmacher, V. Cancer vaccines and oncolytic viruses exert profoundly lower side effects in cancer patients than other systemic therapies: A comparative analysis. Biomedicines, 2020, 8(3), 61. doi: 10.3390/biomedicines8030061 PMID: 32188078
  36. Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(8), 498-513. doi: 10.1038/s41577-018-0014-6 PMID: 29743717
  37. Yang, L.; Gu, X.; Yu, J.; Ge, S.; Fan, X. Oncolytic virotherapy: From bench to bedside. Front. Cell Dev. Biol., 2021, 9, 790150-790150. doi: 10.3389/fcell.2021.790150 PMID: 34901031
  38. Gholami, S.; Marano, A.; Chen, N.G.; Aguilar, R.J.; Frentzen, A.; Chen, C.H.; Lou, E.; Fujisawa, S.; Eveno, C.; Belin, L.; Zanzonico, P.; Szalay, A.; Fong, Y. Erratum to: A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res. Treat., 2016, 156(3), 607-608. doi: 10.1007/s10549-016-3767-2 PMID: 27026359
  39. Breitbach, C.J.; Paterson, J.M.; Lemay, C.G.; Falls, T.J.; McGuire, A.; Parato, K.A.; Stojdl, D.F.; Daneshmand, M.; Speth, K.; Kirn, D.; McCart, J.A.; Atkins, H.; Bell, J.C. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther., 2007, 15(9), 1686-1693. doi: 10.1038/sj.mt.6300215 PMID: 17579581
  40. Ekeke, C.N. Intrapleural interleukin-2–expressing oncolytic virotherapy enhances acute antitumor effects and T-cell receptor diversity in malignant pleural disease. J. Thorac. Cardiovasc. Surg., 2022, 163(4), e313-e328. doi: 10.1016/j.jtcvs.2020.11.160 PMID: 33485667
  41. Downs-Canner, S.; Guo, Z.S.; Ravindranathan, R.; Breitbach, C.J.; O'Malley, M.E.; Jones, H.L.; Moon, A.; McCart, J.A.; Shuai, Y.; Zeh, H.J.; Bartlett, D.L. Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol. Ther., 2016, 24(8), 1492-1501. doi: 10.1038/mt.2016.101 PMID: 27203445
  42. Chhabra, N.; Kennedy, J. A review of cancer immunotherapy toxicity II: Adoptive cellular therapies, kinase inhibitors, monoclonal antibodies, and oncolytic viruses. J. Med. Toxicol., 2022, 18(1), 43-55. doi: 10.1007/s13181-021-00835-6 PMID: 33821435
  43. Corrigan, P.A.; Beaulieu, C.; Patel, R.B.; Lowe, D.K. Talimogene laherparepvec: An oncolytic virus therapy for melanoma. Ann. Pharmacother., 2017, 51(8), 675-681. doi: 10.1177/1060028017702654 PMID: 28351167
  44. Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; Logan, T.F.; Hauschild, A.; Lebbé, C.; Chen, L.; Kim, J.J.; Gansert, J.; Andtbacka, R.H.I.; Kaufman, H.L. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol., 2018, 36(17), 1658-1667. doi: 10.1200/JCO.2017.73.7379 PMID: 28981385
  45. Freedman, J.D.; Duffy, M.R.; Lei-Rossmann, J.; Muntzer, A.; Scott, E.M.; Hagel, J.; Campo, L.; Bryant, R.J.; Verrill, C.; Lambert, A.; Miller, P.; Champion, B.R.; Seymour, L.W.; Fisher, K.D. An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res., 2018, 78(24), 6852-6865. doi: 10.1158/0008-5472.CAN-18-1750 PMID: 30449733
  46. Busse, D.; de la Rosa, M.; Hobiger, K.; Thurley, K.; Flossdorf, M.; Scheffold, A.; Höfer, T. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. USA, 2010, 107(7), 3058-3063. doi: 10.1073/pnas.0812851107 PMID: 20133667
  47. Liu, W.; Dai, E.; Liu, Z.; Ma, C.; Guo, Z.S.; Bartlett, D.L. In situ therapeutic cancer vaccination with an oncolytic virus expressing membrane-tethered IL-2. Mol. Ther. Oncolytics, 2020, 17, 350-360. doi: 10.1016/j.omto.2020.04.006 PMID: 32405533
  48. Guo, Z.S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W.J.; He, Y.; Liu, Z.; Bartlett, D.L. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J. Immunother. Cancer, 2019, 7(1), 6. doi: 10.1186/s40425-018-0495-7 PMID: 30626434
  49. Torres-Domínguez, L.E.; McFadden, G. Poxvirus oncolytic virotherapy. Expert Opin. Biol. Ther., 2019, 19(6), 561-573. doi: 10.1080/14712598.2019.1600669 PMID: 30919708
  50. Zeh, H.J.; Downs-Canner, S.; McCart, J.A.; Guo, Z.S.; Rao, U.N.M.; Ramalingam, L.; Thorne, S.H.; Jones, H.L.; Kalinski, P.; Wieckowski, E.; O'Malley, M.E.; Daneshmand, M.; Hu, K.; Bell, J.C.; Hwang, T.H.; Moon, A.; Breitbach, C.J.; Kirn, D.H.; Bartlett, D.L. First-in-man study of western reserve strain oncolytic vaccinia virus: Safety, systemic spread, and antitumor activity. Mol. Ther., 2015, 23(1), 202-214. doi: 10.1038/mt.2014.194 PMID: 25292189
  51. Pearl, T.M.; Markert, J.M.; Cassady, K.A.; Ghonime, M.G. Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors. Mol. Ther. Oncolytics, 2019, 13, 14-21. doi: 10.1016/j.omto.2019.03.001 PMID: 30997392
  52. Rajani, K.; Parrish, C.; Kottke, T.; Thompson, J.; Zaidi, S.; Ilett, L.; Shim, K.G.; Diaz, R.M.; Pandha, H.; Harrington, K.; Coffey, M.; Melcher, A.; Vile, R. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol. Ther., 2016, 24(1), 166-174. doi: 10.1038/mt.2015.156 PMID: 26310630
  53. McCart, J.A.; Ward, J.M.; Lee, J.; Hu, Y.; Alexander, H.R.; Libutti, S.K.; Moss, B.; Bartlett, D.L. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res., 2001, 61(24), 8751-8757. PMID: 11751395
  54. Parato, K.A.; Breitbach, C.J.; Le Boeuf, F.; Wang, J.; Storbeck, C.; Ilkow, C.; Diallo, J.S.; Falls, T.; Burns, J.; Garcia, V.; Kanji, F.; Evgin, L.; Hu, K.; Paradis, F.; Knowles, S.; Hwang, T.H.; Vanderhyden, B.C.; Auer, R.; Kirn, D.H.; Bell, J.C. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther., 2012, 20(4), 749-758. doi: 10.1038/mt.2011.276 PMID: 22186794
  55. Bai, F.L.; Yu, Y.H.; Tian, H.; Ren, G.P.; Wang, H.; Zhou, B.; Han, X.H.; Yu, Q.Z.; Li, D.S. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol. Ther., 2014, 15(9), 1226-1238. doi: 10.4161/cbt.29686 PMID: 24971746
  56. Qin, H.; Valentino, J.; Manna, S.; Tripathi, P.K.; Bhattacharya-Chatterjee, M.; Foon, K.A.; O'Malley, B.W., Jr; Chatterjee, S.K. Gene therapy for head and neck cancer using vaccinia virus expressing IL-2 in a murine model, with evidence of immune suppression. Mol. Ther., 2001, 4(6), 551-558. doi: 10.1006/mthe.2001.0493 PMID: 11735339
  57. Ekeke, C.N.; Russell, K.L.; Joubert, K.; Bartlett, D.L.; Luketich, J.D.; Soloff, A.C.; Guo, Z.S.; Lotze, M.T.; Dhupar, R. Fighting fire with fire: oncolytic virotherapy for thoracic malignancies. Ann. Surg. Oncol., 2021, 28(5), 2715-2727. doi: 10.1245/s10434-020-09477-4 PMID: 33575873
  58. Ross, S.H.; Cantrell, D.A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol., 2018, 36(1), 411-433. doi: 10.1146/annurev-immunol-042617-053352 PMID: 29677473
  59. Suraweera, C.D.; Anasir, M.I.; Chugh, S.; Javorsky, A.; Impey, R.E.; Hasan Zadeh, M.; Soares da Costa, T.P.; Hinds, M.G.; Kvansakul, M. Structural insight into tanapoxvirus-mediated inhibition of apoptosis. FEBS J., 2020, 287(17), 3733-3750. doi: 10.1111/febs.15365 PMID: 32412687
  60. Gschwandtner, M.; Derler, R.; Midwood, K.S. More than just attractive: How CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol., 2019, 10, 2759. doi: 10.3389/fimmu.2019.02759 PMID: 31921102
  61. Zhang, T.; Kordish, D.H.; Suryawanshi, Y.R.; Eversole, R.R.; Kohler, S.; Mackenzie, C.D.; Essani, K. Oncolytic tanapoxvirus expressing interleukin-2 is capable of inducing the regression of human melanoma tumors in the absence of T cells. Curr. Cancer Drug Targets, 2018, 18(6), 577-591. doi: 10.2174/1568009617666170630143931 PMID: 28669340
  62. Dempe, S.; Lavie, M.; Struyf, S.; Bhat, R.; Verbeke, H.; Paschek, S.; Berghmans, N.; Geibig, R.; Rommelaere, J.; Van Damme, J.; Dinsart, C. Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: Implication of leucocyte recruitment. Cancer Immunol. Immunother., 2012, 61(11), 2113-2123. doi: 10.1007/s00262-012-1279-4 PMID: 22576056
  63. Angelova, A.L.; Aprahamian, M.; Grekova, S.P.; Hajri, A.; Leuchs, B.; Giese, N.A.; Dinsart, C.; Herrmann, A.; Balboni, G.; Rommelaere, J.; Raykov, Z. Improvement of gemcitabine-based therapy of pancreatic carcinoma by means of oncolytic parvovirus H-1PV. Clin. Cancer Res., 2009, 15(2), 511-519. doi: 10.1158/1078-0432.CCR-08-1088 PMID: 19147756
  64. Elankumaran, S.; Rockemann, D.; Samal, S.K. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J. Virol., 2006, 80(15), 7522-7534. doi: 10.1128/JVI.00241-06 PMID: 16840332
  65. Zeng, J.; Fournier, P.; Schirrmacher, V. Induction of interferon-α and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology, 2002, 297(1), 19-30. doi: 10.1006/viro.2002.1413 PMID: 12083832
  66. Sampath, P.; Thorne, S.H. Arming viruses in multi-mechanistic oncolytic viral therapy: Current research and future developments, with emphasis on poxviruses. Oncolytic Virother., 2013, 3, 1-9. PMID: 27512659
  67. Hu, J.; Wang, H.; Gu, J.; Liu, X.; Zhou, X. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim. Biophys. Sin., 2018, 50(10), 1018-1027. doi: 10.1093/abbs/gmy096 PMID: 30137199
  68. Wu, Y.; He, J.; Geng, J.; An, Y.; Ye, X.; Yan, S.; Yu, Q.; Yin, J.; Zhang, Z.; Li, D. Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy. Eur. J. Pharmacol., 2017, 802, 85-92. doi: 10.1016/j.ejphar.2017.02.042 PMID: 28246027
  69. Mohamed Amin, Z.; Che Ani, M.A.; Tan, S.W.; Yeap, S.K.; Alitheen, N.B.; Syed Najmuddin, S.U.F.; Kalyanasundram, J.; Chan, S.C.; Veerakumarasivam, A.; Chia, S.L.; Yusoff, K. Evaluation of a recombinant Newcastle disease virus expressing human IL12 against human breast cancer. Sci. Rep., 2019, 9(1), 13999. doi: 10.1038/s41598-019-50222-z PMID: 31570732
  70. Li, P.; Zhang, H.; Ji, L.; Wang, Z. A review of clinical and preclinical studies on therapeutic strategies using interleukin-12 in cancer therapy and the protective role of interleukin-12 in hematological recovery in chemoradiotherapy. Med. Sci. Monit., 2020, 26, e923855-e1. doi: 10.12659/MSM.923855 PMID: 32811803
  71. Nguyen, H.M.; Guz-Montgomery, K.; Saha, D. Oncolytic virus encoding a master pro-inflammatory cytokine interleukin 12 in cancer immunotherapy. Cells, 2020, 9(2), 400. doi: 10.3390/cells9020400 PMID: 32050597
  72. Lee, S.H.; Fragoso, M.F.; Biron, C.A. Cutting edge: A novel mechanism bridging innate and adaptive immunity: IL-12 induction of CD25 to form high-affinity IL-2 receptors on NK cells. J. Immunol., 2012, 189(6), 2712-2716. doi: 10.4049/jimmunol.1201528 PMID: 22888135
  73. Gollob, J.A.; Veenstra, K.G.; Parker, R.A.; Mier, J.W.; McDermott, D.F.; Clancy, D.; Tutin, L.; Koon, H.; Atkins, M.B. Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J. Clin. Oncol., 2003, 21(13), 2564-2573. doi: 10.1200/JCO.2003.12.119 PMID: 12829677
  74. Zaki, M.H.; Wysocka, M.; Everetts, S.E.; Rook, A.H.; Wang, K.S.; French, L.E.; Ritz, J. Synergistic enhancement of cell-mediated immunity by interleukin-12 plus interleukin-2: Basis for therapy of cutaneous T cell lymphoma. J. Invest. Dermatol., 2002, 118(2), 366-371. doi: 10.1046/j.1523-1747.2002.01646.x PMID: 11841558
  75. Bradburn, M.J.; Clark, T.G.; Love, S.B.; Altman, D.G. Survival analysis part III: Multivariate data analysis – choosing a model and assessing its adequacy and fit. Br. J. Cancer, 2003, 89(4), 605-611. doi: 10.1038/sj.bjc.6601120 PMID: 12915864
  76. Zamarin, D. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med, 2014, 6(226), 226ra32-226ra32. doi: 10.1126/scitranslmed.3008095
  77. Santos, J.M.; Cervera-Carrascon, V.; Havunen, R.; Zafar, S.; Siurala, M.; Sorsa, S.; Anttila, M.; Kanerva, A.; Hemminki, A. Adenovirus coding for interleukin-2 and tumor necrosis factor alpha replaces lymphodepleting chemotherapy in adoptive T cell therapy. Mol. Ther., 2018, 26(9), 2243-2254. doi: 10.1016/j.ymthe.2018.06.001 PMID: 30017877
  78. Tähtinen, S.; Blattner, C.; Vähä-Koskela, M.; Saha, D.; Siurala, M.; Parviainen, S.; Utikal, J.; Kanerva, A.; Umansky, V.; Hemminki, A. T-cell therapy enabling adenoviruses coding for IL2 and TNFα induce systemic immunomodulation in mice with spontaneous melanoma. J. Immunother., 2016, 39(9), 343-354. doi: 10.1097/CJI.0000000000000144 PMID: 27741089
  79. Havunen, R.; Siurala, M.; Sorsa, S.; Grönberg-Vähä-Koskela, S.; Behr, M.; Tähtinen, S.; Santos, J.M.; Karell, P.; Rusanen, J.; Nettelbeck, D.M.; Ehrhardt, A.; Kanerva, A.; Hemminki, A. Oncolytic adenoviruses armed with tumor necrosis factor alpha and interleukin-2 enable successful adoptive cell therapy. Mol. Ther. Oncolytics, 2017, 4, 77-86. doi: 10.1016/j.omto.2016.12.004 PMID: 28345026
  80. Siurala, M.; Havunen, R.; Saha, D.; Lumen, D.; Airaksinen, A.J.; Tähtinen, S.; Cervera-Carrascon, V.; Bramante, S.; Parviainen, S.; Vähä-Koskela, M.; Kanerva, A.; Hemminki, A. Adenoviral delivery of tumor necrosis factor-α and interleukin-2 enables successful adoptive cell therapy of immunosuppressive melanoma. Mol. Ther., 2016, 24(8), 1435-1443. doi: 10.1038/mt.2016.137 PMID: 27357626
  81. Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov., 2015, 14(9), 642-662. doi: 10.1038/nrd4663 PMID: 26323545
  82. Farassati, F.; Yang, A.D.; Lee, P.W.K. Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat. Cell Biol., 2001, 3(8), 745-750. doi: 10.1038/35087061 PMID: 11483960
  83. Liu, B.L.; Robinson, M.; Han, Z-Q.; Branston, R.H.; English, C.; Reay, P.; McGrath, Y.; Thomas, S.K.; Thornton, M.; Bullock, P.; Love, C.A.; Coffin, R.S. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther., 2003, 10(4), 292-303. doi: 10.1038/sj.gt.3301885 PMID: 12595888
  84. Goldsmith, K.; Chen, W.; Johnson, D.C.; Hendricks, R.L. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J. Exp. Med., 1998, 187(3), 341-348. doi: 10.1084/jem.187.3.341 PMID: 9449714
  85. Tomazin, R.; van Schoot, N.E.G.; Goldsmith, K.; Jugovic, P.; Sempé, P.; Früh, K.; Johnson, D.C. Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J. Virol., 1998, 72(3), 2560-2563. doi: 10.1128/JVI.72.3.2560-2563.1998 PMID: 9499125
  86. Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G.P.; Daniels, G.A.; Harrington, K.; Middleton, M.R.; Miller, W.H., Jr; Zager, J.S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R.S. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol., 2015, 33(25), 2780-2788. doi: 10.1200/JCO.2014.58.3377 PMID: 26014293
  87. Harrow, S.; Papanastassiou, V.; Harland, J.; Mabbs, R.; Petty, R.; Fraser, M.; Hadley, D.; Patterson, J.; Brown, S.M.; Rampling, R. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: Safety data and long-term survival. Gene Ther., 2004, 11(22), 1648-1658. doi: 10.1038/sj.gt.3302289 PMID: 15334111
  88. Streby, K.A.; Geller, J.I.; Currier, M.A.; Warren, P.S.; Racadio, J.M.; Towbin, A.J.; Vaughan, M.R.; Triplet, M.; Ott-Napier, K.; Dishman, D.J.; Backus, L.R.; Stockman, B.; Brunner, M.; Simpson, K.; Spavin, R.; Conner, J.; Cripe, T.P. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin. Cancer Res., 2017, 23(14), 3566-3574. doi: 10.1158/1078-0432.CCR-16-2900 PMID: 28495911
  89. Fukuhara, H.; Todo, T. Oncolytic herpes simplex virus type 1 and host immune responses. Curr. Cancer Drug Targets, 2007, 7(2), 149-155. doi: 10.2174/156800907780058907 PMID: 17346106
  90. Uche, I.K.; Kousoulas, K.G.; Rider, P.J.F. The effect of herpes simplex virus-type-1 (HSV-1) oncolytic immunotherapy on the tumor microenvironment. Viruses, 2021, 13(7), 1200. doi: 10.3390/v13071200 PMID: 34206677
  91. Liu, Z.; Ravindranathan, R.; Kalinski, P.; Guo, Z.S.; Bartlett, D.L. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat. Commun., 2017, 8(1), 14754. doi: 10.1038/ncomms14754 PMID: 28345650
  92. Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front. Immunol., 2020, 11, 683. doi: 10.3389/fimmu.2020.00683 PMID: 32411132
  93. Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium signaling and cardiac arrhythmias. Circ. Res., 2017, 120(12), 1969-1993. doi: 10.1161/CIRCRESAHA.117.310083 PMID: 28596175
  94. Cho, H.K. Reduction of immune inhibitory myeloid derived suppressor cells by low dose sunitinib combined with a cancer vaccine to provide therapeutic benefit to tumor-bearing mice; American Society of Clinical Oncology, 2017. doi: 10.1200/JCO.2017.35.15_suppl.e23084
  95. Thomas, M.A.; Spencer, J.F.; La Regina, M.C.; Dhar, D.; Tollefson, A.E.; Toth, K.; Wold, W.S.M. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res., 2006, 66(3), 1270-1276. doi: 10.1158/0008-5472.CAN-05-3497 PMID: 16452178
  96. Medler, T.R.; Cotechini, T.; Coussens, L.M. Immune response to cancer therapy: Mounting an effective antitumor response and mechanisms of resistance. Trends Cancer, 2015, 1(1), 66-75. doi: 10.1016/j.trecan.2015.07.008 PMID: 26457331
  97. Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348(6230), 62-68. doi: 10.1126/science.aaa4967 PMID: 25838374
  98. Santos, J.M.; Heiniö, C.; Cervera-Carrascon, V.; Quixabeira, D.C.A.; Siurala, M.; Havunen, R.; Butzow, R.; Zafar, S.; de Gruijl, T.; Lassus, H.; Kanerva, A.; Hemminki, A. Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J. Immunother. Cancer, 2020, 8(1), e000188. doi: 10.1136/jitc-2019-000188 PMID: 31940588
  99. Klebanoff, C.; Khong, H.; Antony, P.; Palmer, D.; Restifo, N. Sinks, suppressors and antigen presenters: How lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol., 2005, 26(2), 111-117. doi: 10.1016/j.it.2004.12.003 PMID: 15668127
  100. Rosenberg, S.A.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; Hughes, M.S.; Phan, G.Q.; Citrin, D.E.; Restifo, N.P.; Robbins, P.F.; Wunderlich, J.R.; Morton, K.E.; Laurencot, C.M.; Steinberg, S.M.; White, D.E.; Dudley, M.E. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res., 2011, 17(13), 4550-4557. doi: 10.1158/1078-0432.CCR-11-0116 PMID: 21498393
  101. Dudley, M.E.; Wunderlich, J.R.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Restifo, N.P.; Royal, R.E.; Kammula, U.; White, D.E.; Mavroukakis, S.A.; Rogers, L.J.; Gracia, G.J.; Jones, S.A.; Mangiameli, D.P.; Pelletier, M.M.; Gea-Banacloche, J.; Robinson, M.R.; Berman, D.M.; Filie, A.C.; Abati, A.; Rosenberg, S.A. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol., 2005, 23(10), 2346-2357. doi: 10.1200/JCO.2005.00.240 PMID: 15800326
  102. Aranda, F.; Buqué, A.; Bloy, N.; Castoldi, F.; Eggermont, A.; Cremer, I.; Fridman, W.H.; Fucikova, J.; Galon, J.; Spisek, R.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Adoptive cell transfer for oncological indications. OncoImmunology, 2015, 4(11), e1046673. doi: 10.1080/2162402X.2015.1046673 PMID: 26451319
  103. Rosenberg, S.A. IL-2: The first effective immunotherapy for human cancer. J. Immunol., 2014, 192(12), 5451-5458. doi: 10.4049/jimmunol.1490019 PMID: 24907378
  104. Khammari, A.; Nguyen, J.M.; Saint-Jean, M.; Knol, A.C.; Pandolfino, M.C.; Quereux, G.; Brocard, A.; Peuvrel, L.; Saiagh, S.; Bataille, V.; Limacher, J.M.; Dreno, B. Adoptive T cell therapy combined with intralesional administrations of TG1042 (adenovirus expressing interferon-γ) in metastatic melanoma patients. Cancer Immunol. Immunother., 2015, 64(7), 805-815. doi: 10.1007/s00262-015-1691-7 PMID: 25846669
  105. Stewart, A.K.; Lassam, N.J.; Quirt, I.C.; Bailey, D.J.; Rotstein, L.E.; Krajden, M.; Dessureault, S.; Gallinger, S.; Cappe, D.; Wan, Y.; Addison, C.L.; Moen, R.C.; Gauldie, J.; Graham, F.L. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther., 1999, 6(3), 350-363. doi: 10.1038/sj.gt.3300833 PMID: 10435085
  106. Vassilev, L.; Ranki, T.; Joensuu, T.; Jäger, E.; Karbach, J.; Wahle, C.; Partanen, K.; Kairemo, K.; Alanko, T.; Turkki, R.; Linder, N.; Lundin, J.; Ristimäki, A.; Kankainen, M.; Hemminki, A.; Backman, C.; Dienel, K.; von Euler, M.; Haavisto, E.; Hakonen, T.; Juhila, J.; Jäderberg, M.; Priha, P.; Vuolanto, A.; Pesonen, S. Repeated intratumoral administration of ONCOS-102 leads to systemic antitumor CD8+ T-cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. OncoImmunology, 2015, 4(7), e1017702. doi: 10.1080/2162402X.2015.1017702 PMID: 26140248
  107. Endo, Y.; Sakai, R.; Ouchi, M.; Onimatsu, H.; Hioki, M.; Kagawa, S.; Uno, F.; Watanabe, Y.; Urata, Y.; Tanaka, N.; Fujiwara, T. Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene, 2008, 27(17), 2375-2381. doi: 10.1038/sj.onc.1210884 PMID: 17982491
  108. Sang, Y.; Miller, L.C.; Blecha, F. Macrophage polarization in virus-host interactions. J. Clin. Cell. Immunol., 2015, 6(2), 311. PMID: 26213635
  109. Boyman, O.; Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol., 2012, 12(3), 180-190. doi: 10.1038/nri3156 PMID: 22343569
  110. Ahmadzadeh, M.; Rosenberg, S.A. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood, 2006, 107(6), 2409-2414. doi: 10.1182/blood-2005-06-2399 PMID: 16304057
  111. Rabinovici, R.; Feuerstein, G.; Abdullah, F.; Whiteford, M.; Borboroglu, P.; Sheikh, E.; Phillip, D.R.; Ovadia, P.; Bobroski, L.; Bagasra, O.; Neville, L.F. Locally produced tumor necrosis factor-α mediates interleukin-2-induced lung injury. Circ. Res., 1996, 78(2), 329-336. doi: 10.1161/01.RES.78.2.329 PMID: 8575077
  112. Reya, T.; Contractor, N.V.; Couzens, M.S.; Wasik, M.A.; Emerson, S.G.; Carding, S.R. Abnormal myelocytic cell development in interleukin-2 (IL-2)-deficient mice: Evidence for the involvement of IL-2 in myelopoiesis. Blood, 1998, 91(8), 2935-2947. doi: 10.1182/blood.V91.8.2935.2935_2935_2947 PMID: 9531604
  113. Mahmud, A.; Feely, J. Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension, 2005, 46(5), 1118-1122. doi: 10.1161/01.HYP.0000185463.27209.b0 PMID: 16216991
  114. Guzik, T.J.; Hoch, N.E.; Brown, K.A.; McCann, L.A.; Rahman, A.; Dikalov, S.; Goronzy, J.; Weyand, C.; Harrison, D.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J. Exp. Med., 2007, 204(10), 2449-2460. doi: 10.1084/jem.20070657 PMID: 17875676
  115. Sivakumar, P.V.; Garcia, R.; Waggie, K.S.; Anderson-Haley, M.; Nelson, A.; Hughes, S.D. Comparison of vascular leak syndrome in mice treated with IL21 or IL2. Comp. Med., 2013, 63(1), 13-21. PMID: 23561933
  116. Huang, C.M.; Elin, R.J.; Ruddel, M.; Sliva, C.; Lotze, M.T.; Rosenberg, S.A. Changes in laboratory results for cancer patients treated with interleukin-2. Clin. Chem., 1990, 36(3), 431-434. doi: 10.1093/clinchem/36.3.431 PMID: 2311209
  117. Kradin, R.; Lazarus, D.S.; Dubinett, S.M.; Gifford, J.; Grove, B.; Kurnick, J.T.; Preffer, F.I.; Pinto, C.E.; Davidson, E.; Callahan, R.; Strauss, H.W. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet, 1989, 333(8638), 577-580. doi: 10.1016/S0140-6736(89)91609-7 PMID: 2564111
  118. Dudley, M.E.; Gross, C.A.; Langhan, M.M.; Garcia, M.R.; Sherry, R.M.; Yang, J.C.; Phan, G.Q.; Kammula, U.S.; Hughes, M.S.; Citrin, D.E.; Restifo, N.P.; Wunderlich, J.R.; Prieto, P.A.; Hong, J.J.; Langan, R.C.; Zlott, D.A.; Morton, K.E.; White, D.E.; Laurencot, C.M.; Rosenberg, S.A. CD8+ enriched "young" tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res., 2010, 16(24), 6122-6131. doi: 10.1158/1078-0432.CCR-10-1297 PMID: 20668005
  119. Besser, M.J.; Shapira-Frommer, R.; Itzhaki, O.; Treves, A.J.; Zippel, D.B.; Levy, D.; Kubi, A.; Shoshani, N.; Zikich, D.; Ohayon, Y.; Ohayon, D.; Shalmon, B.; Markel, G.; Yerushalmi, R.; Apter, S.; Ben-Nun, A.; Ben-Ami, E.; Shimoni, A.; Nagler, A.; Schachter, J. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res., 2013, 19(17), 4792-4800. doi: 10.1158/1078-0432.CCR-13-0380 PMID: 23690483
  120. Ellebaek, E.; Iversen, T.Z.; Junker, N.; Donia, M.; Engell-Noerregaard, L.; Met, Ö.; Hölmich, L.R.; Andersen, R.S.; Hadrup, S.R.; Andersen, M.H. thor Straten, P.; Svane, I.M. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J. Transl. Med., 2012, 10(1), 169. doi: 10.1186/1479-5876-10-169 PMID: 22909342
  121. Ge, M.Q.; Ho, A.W.S.; Tang, Y.; Wong, K.H.S.; Chua, B.Y.L.; Gasser, S.; Kemeny, D.M. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. J. Immunol., 2012, 189(5), 2099-2109. doi: 10.4049/jimmunol.1103474 PMID: 22869906
  122. Kline, J.; Zhang, L.; Battaglia, L.; Cohen, K.S.; Gajewski, T.F. Cellular and molecular requirements for rejection of B16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation. J. Immunol., 2012, 188(6), 2630-2642. doi: 10.4049/jimmunol.1100845 PMID: 22312128
  123. Zhang, B.; Karrison, T.; Rowley, D.A.; Schreiber, H. IFN-γ and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J. Clin. Invest., 2008, 118(4), 1398-1404. doi: 10.1172/JCI33522 PMID: 18317595
  124. Ranki, T.; Pesonen, S.; Hemminki, A.; Partanen, K.; Kairemo, K.; Alanko, T.; Lundin, J.; Linder, N.; Turkki, R.; Ristimäki, A.; Jäger, E.; Karbach, J.; Wahle, C.; Kankainen, M.; Backman, C.; von Euler, M.; Haavisto, E.; Hakonen, T.; Heiskanen, R.; Jaderberg, M.; Juhila, J.; Priha, P.; Suoranta, L.; Vassilev, L.; Vuolanto, A.; Joensuu, T. Phase I study with ONCOS-102 for the treatment of solid tumors – an evaluation of clinical response and exploratory analyses of immune markers. J. Immunother. Cancer, 2016, 4(1), 17. doi: 10.1186/s40425-016-0121-5 PMID: 26981247
  125. Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The other side of CAR T-cell therapy: Cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book, 2019, 39(39), 433-444. doi: 10.1200/EDBK_238691 PMID: 31099694
  126. Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; Kirkwood, J.M.; Gajewski, T.F.; Chen, L.; Gorski, K.S.; Anderson, A.A.; Diede, S.J.; Lassman, M.E.; Gansert, J.; Hodi, F.S.; Long, G.V. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell, 2017, 170(6), 1109-1119.e10. doi: 10.1016/j.cell.2017.08.027 PMID: 28886381
  127. Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell, 2017, 32(2), 253-267.e5. doi: 10.1016/j.ccell.2017.07.006 PMID: 28810147
  128. Dupic, T.; Marcou, Q.; Walczak, A.M.; Mora, T. Genesis of the αβ T-cell receptor. PLOS Comput. Biol., 2019, 15(3), e1006874. doi: 10.1371/journal.pcbi.1006874 PMID: 30830899
  129. Rosati, E.; Dowds, C.M.; Liaskou, E.; Henriksen, E.K.K.; Karlsen, T.H.; Franke, A. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol., 2017, 17(1), 61. doi: 10.1186/s12896-017-0379-9 PMID: 28693542
  130. Aghbash, P.S.; Hemmat, N.; Fathi, H.; Baghi, H.B. Monoclonal antibodies in cervical malignancy-related HPV. Front. Oncol., 2022, 12, 904790. doi: 10.3389/fonc.2022.904790 PMID: 36276117
  131. Gujar, S.; Bell, J.; Diallo, J.S. SnapShot: Cancer immunotherapy with oncolytic viruses. Cell, 2019, 176(5), 1240-1240.e1. doi: 10.1016/j.cell.2019.01.051 PMID: 30794777
  132. Russell, S.J.; Barber, G.N. Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell, 2018, 33(4), 599-605. doi: 10.1016/j.ccell.2018.03.011 PMID: 29634947
  133. Chaurasiya, S.; Chen, N.G.; Fong, Y. Oncolytic viruses and immunity. Curr. Opin. Immunol., 2018, 51, 83-90. doi: 10.1016/j.coi.2018.03.008 PMID: 29550660
  134. Yun, C.O.; Hong, J.; Yoon, A.R. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front. Immunol., 2022, 13, 953410. doi: 10.3389/fimmu.2022.953410 PMID: 36091031
  135. Laurie, S.A.; Bell, J.C.; Atkins, H.L.; Roach, J.; Bamat, M.K.; O'Neil, J.D.; Roberts, M.S.; Groene, W.S.; Lorence, R.M. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin. Cancer Res., 2006, 12(8), 2555-2562. doi: 10.1158/1078-0432.CCR-05-2038 PMID: 16638865
  136. Morris, D.G.; Feng, X.; DiFrancesco, L.M.; Fonseca, K.; Forsyth, P.A.; Paterson, A.H.; Coffey, M.C.; Thompson, B. REO-001: A phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin®) in patients with advanced solid tumors. Invest. New Drugs, 2013, 31(3), 696-706. doi: 10.1007/s10637-012-9865-z PMID: 22886613
  137. Dillon, M.F.; Hill, A.D.K.; Quinn, C.M.; McDermott, E.W.; O'Higgins, N. A pathologic assessment of adequate margin status in breast-conserving therapy. Ann. Surg. Oncol., 2006, 13(3), 333-339. doi: 10.1245/ASO.2006.03.098 PMID: 16474911
  138. Nemunaitis, J.; Senzer, N.; Sarmiento, S.; Zhang, Y-A.; Arzaga, R.; Sands, B.; Maples, P.; Tong, A.W. A phase I trial of intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer Gene Ther., 2007, 14(11), 885-893. doi: 10.1038/sj.cgt.7701080 PMID: 17704755
  139. Bramante, S.; Koski, A.; Liikanen, I.; Vassilev, L.; Oksanen, M.; Siurala, M.; Heiskanen, R.; Hakonen, T.; Joensuu, T.; Kanerva, A.; Pesonen, S.; Hemminki, A. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer. OncoImmunology, 2016, 5(2), e1078057. doi: 10.1080/2162402X.2015.1078057 PMID: 27057453
  140. Li, J-L.; Liu, H-L.; Zhang, X-R.; Xu, J-P.; Hu, W-K.; Liang, M.; Chen, S-Y.; Hu, F.; Chu, D-T. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther., 2009, 16(3), 376-382. doi: 10.1038/gt.2008.179 PMID: 19092859
  141. Luo, C.; Wang, P.; He, S.; Zhu, J.; Shi, Y.; Wang, J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front. Oncol., 2022, 12, 919072. doi: 10.3389/fonc.2022.919072 PMID: 35795050
  142. Xia, C.; Zhang, Z.; Xue, Y.; Wang, P.; Liu, Y. Mechanisms of the increase in the permeability of the blood–tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J. Neurooncol., 2009, 94(1), 41-50. doi: 10.1007/s11060-009-9812-9 PMID: 19234812

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023