Carbon Nanotubes in Breast Cancer Treatment: An Insight into Properties, Functionalization, and Toxicity
- Авторы: Srivastava N.1, Mishra Y.2, Mishra V.1, Ranjan A.1, Tambuwala M.3
-
Учреждения:
- School of Pharmaceutical Sciences, Lovely Professional University
- School of Bioengineering and Biosciences, Lovely Professional University
- Department of Pharmacology and Therapeutics, Lincoln Medical School,, , University of Lincoln,
- Выпуск: Том 23, № 14 (2023)
- Страницы: 1606-1617
- Раздел: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694332
- DOI: https://doi.org/10.2174/1871520623666230510094850
- ID: 694332
Цитировать
Полный текст
Аннотация
Breast cancer is the most common cancer among women worldwide. It is the main reason why women die from cancer. Early diagnosis due to increased public awareness and better screening helps to tackle the disease through surgical resection and curative therapies. Chemotherapies are frequently used for cancer treatment, but these have severe adverse effects due to a lack of target specificity. Formulation development scientists and clinicians are now particularly concerned with developing safe and efficient drug delivery systems for breast cancer treatment. Potentially relevant literature to get the latest developments and updated information related to properties, functionalization, toxicity and application of carbon nanotubes in breast cancer treatment has been obtained from Web of Science, Scopus, and PubMed portals. Nanomedicine has emerged as a novel tool for target-specific delivery systems and other biomedical applications. Carbon nanotubes (CNTs) are gaining popularity due to their unique mechanical and physiochemical properties for the diagnosis and treatment of cancer. It is a promising carrier that can deliver micro and macromolecules to the cancer cell. CNTs can be functionalized at the surface with different functional groups, which helps in targeting the drugs to target cancer cells. The present review has elaborated on different functionalization approaches and toxicity aspects of CNTs.
Ключевые слова
Об авторах
Neha Srivastava
School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Yachana Mishra
School of Bioengineering and Biosciences, Lovely Professional University
Email: info@benthamscience.net
Vijay Mishra
School of Pharmaceutical Sciences, Lovely Professional University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Abhigyan Ranjan
School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Murtaza Tambuwala
Department of Pharmacology and Therapeutics, Lincoln Medical School,, , University of Lincoln,
Email: info@benthamscience.net
Список литературы
- Khan, R.; Arshad, F.; Hassan, I.U.; Naikoo, G.A.; Pedram, M.Z.; Zedegan, M.S.; Pourfarzad, H.; Aljabali, A.A.A.; Serrano-Aroca, Á.; Haggag, Y.; Mishra, V.; Mishra, Y.; Birkett, M.; Tambuwala, M.M. Advances in nanomaterial-based immunosensors for prostate cancer screening. Biomed. Pharmacother., 2022, 155, 113649. doi: 10.1016/j.biopha.2022.113649 PMID: 36108389
- Gupta, M.; Mishra, Y.; Mishra, V.; Tambuwala, M.M. Current update on anticancer effects of icariin: A journey of the last ten years. EXCLI J., 2022, 21, 680-686. PMID: 35721576
- Mishra, Y.; Amin, H.I.M.; Mishra, V.; Vyas, M.; Prabhakar, P.K.; Gupta, M.; Kanday, R.; Sudhakar, K.; Saini, S. Hromić-Jahjefendić A.; Aljabali, A.A.A.; El-Tanani, M.; Serrano-Aroca, Ã.; Bakshi, H.; Tambuwala, M.M. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomed. Pharmacother., 2022, 153, 113413. doi: 10.1016/j.biopha.2022.113413 PMID: 36076482
- Damasco, J.A.; Ravi, S.; Perez, J.D.; Hagaman, D.E.; Melancon, M.P. Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomaterials, 2020, 10(11), 2186. doi: 10.3390/nano10112186 PMID: 33147800
- Mishra, Y.; Mishra, V.; Tambuwala, M.M. Tumor adhesion molecule targeting for breast cancer nanomedicine.In: Targeted Nanomedicine for Breast Cancer Therapy; Academic Press, Elsevier Science B.V: Amsterdam, 2022, pp. 257-280. doi: 10.1016/B978-0-12-824476-0.00011-5
- Seidi, F.; Jenjob, R.; Phakkeeree, T.; Crespy, D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J. Control. Release, 2018, 284, 188-212. doi: 10.1016/j.jconrel.2018.06.026 PMID: 29940204
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453. doi: 10.1016/j.apsb.2015.07.003 PMID: 26579474
- Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18. doi: 10.1016/j.jare.2018.06.005 PMID: 30581608
- Rompicherla, N.C.; Joshi, P.; Shetty, A.; Sudhakar, K.; Amin, H.I.M.; Mishra, Y.; Mishra, V.; Albutti, A.; Alhumeed, N. Design, formulation, and evaluation of aloe vera gel-based capsaicin transemulgel for osteoarthritis. Pharmaceutics, 2022, 14(9), 1812. doi: 10.3390/pharmaceutics14091812 PMID: 36145560
- Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982. doi: 10.3390/molecules25173982 PMID: 32882920
- Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol., 2021, 69, 226-237. doi: 10.1016/j.semcancer.2019.10.020 PMID: 31704145
- Shoukat, R.; Khan, M.I. Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst. Technol., 2021, 27(12), 4183-4192. doi: 10.1007/s00542-021-05211-6
- Mishra, V.; Kesharwani, P.; Jain, N.K. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(4), 293-330. doi: 10.1615/CritRevTherDrugCarrierSyst.2018014419 PMID: 29972680
- Kesharwani, P.; Mishra, V.; Jain, N.K. Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov. Today, 2015, 20(9), 1049-1060. doi: 10.1016/j.drudis.2015.05.004 PMID: 25997997
- Mehra, N.K.; Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283. doi: 10.1016/j.biomaterials.2013.10.032 PMID: 24210872
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B, 2021, 268(3), 115095. doi: 10.1016/j.mseb.2021.115095
- Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnology, 2020, 18(1), 180. doi: 10.1186/s12951-020-00741-z PMID: 33298099
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
- El-Tanani, M.; Platt-Higgins, A.; Lee, Y.F.; Al Khatib, A.O.; Haggag, Y.; Sutherland, M.; Zhang, S.D.; Aljabali, A.A.A.; Mishra, V.; Serrano-Aroca, Á.; Tambuwala, M.M.; Rudland, P.S. Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer. Life Sci., 2022, 310, 121046. doi: 10.1016/j.lfs.2022.121046 PMID: 36209829
- Sheikh-Hosseini, M.; Larijani, B.; Gholipoor Kakroodi, Z.; Shokoohi, M.; Moarefzadeh, M.; Sayahpour, F.A.; Goodarzi, P.; Arjmand, B. Gene therapy as an emerging therapeutic approach to breast cancer: New Developments and Challenges. Hum. Gene Ther., 2021, 32(21-22), hum.2020.199. doi: 10.1089/hum.2020.199 PMID: 33307949
- Liu, D.; Zhang, W.; Liu, X.; Qiu, R. Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells. Drug Deliv., 2021, 28(1), 776-786. doi: 10.1080/10717544.2021.1902022 PMID: 33866910
- Wang, L. Early diagnosis of breast cancer. Sensors, 2017, 17(7), 1572, 1-20. doi: 10.3390/s17071572
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Ma, J.; Jemal, A.; Fedewa, S.A.; Islami, F.; Lichtenfeld, J.L.; Wender, R.C.; Cullen, K.J.; Brawley, O.W. The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA Cancer J. Clin., 2019, 69(5), 351-362. doi: 10.3322/caac.21564 PMID: 31066919
- Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Peng, Q.; Ruttkay-Nedecky, B.; Milnerowicz, H.; Kizek, R. Carbon nanomaterials for targeted cancer therapy drugs: A critical review. Chem. Rec., 2019, 19(2-3), 502-522. doi: 10.1002/tcr.201800038 PMID: 30156367
- Aqel, A.; El-Nour, K.M.M.A.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem., 2012, 5(1), 1-23. doi: 10.1016/j.arabjc.2010.08.022
- Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact., 2019, 307, 206-222. doi: 10.1016/j.cbi.2019.04.036 PMID: 31054282
- Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine, 2008, 4(3), 173-182. doi: 10.1016/j.nano.2008.04.002 PMID: 18550451
- Pandey, P.; Dahiya, M. Carbon nanotubes: Types, methods of preparation and applications. Int. J. Pharm. Sci. Res., 2016, 1(4), 15-21.
- Abdallah, B.; Elhissi, A.M.; Ahmed, W.; Najlah, M. Carbon nanotubes drug delivery system for cancer treatment.In: Advances in Medical and Surgical Engineering; Ahmed, W., Ed.; Elsevier Science B.V: Amsterdam, 2020, pp. 313-332. doi: 10.1016/B978-0-12-819712-7.00016-4
- Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M.A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P.; Aref, A.R.; Amiri, M.; Baniasadi, F.; Hamblin, M.R. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv., 2015, 12(7), 1089-1105. doi: 10.1517/17425247.2015.1004309 PMID: 25613837
- Kushwaha, S.K.S.; Ghoshal, S.; Rai, A.K.; Singh, S.; Singh, S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz. J. Pharm. Sci., 2013, 49(4), 629-643. doi: 10.1590/S1984-82502013000400002
- Krishnegowda, J.; Shivanna, S.; Kullaiah, B.; Lingaraju, S.; Mavinakere, A.R. Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater., 2015, 2015, 6.
- Badea, M.; Prodana, M.; Dinischiotu, A.; Crihana, C.; Ionita, D.; Balas, M. Cisplatin loaded multi-walled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics, 2018, 10(4), 228. doi: 10.3390/pharmaceutics10040228 PMID: 30428555
- Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev., 2020, 120(5), 2693-2758. doi: 10.1021/acs.chemrev.9b00835 PMID: 32039585
- Wu, Q.; Lv, H.; Zhao, L. Applications of carbon nanomaterials in chiral separation. TrAC -. Trends Analyt. Chem., 2020, 129(115941), 1-48.
- Skandani, A.A.; Zeineldin, R.; Al-Haik, M. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. Langmuir, 2012, 28(20), 7872-7879. doi: 10.1021/la3011162 PMID: 22545729
- Contreras, M.L.; Torres, C.; Villarroel, I.; Rozas, R. Molecular dynamics assessment of doxorubicincarbon nanotubes molecular interactions for the design of drug delivery systems. Struct. Chem., 2019, 30(1), 369-384. doi: 10.1007/s11224-018-1210-5
- Vardharajula, S.; Ali, S.Z.; Tiwari, P.M. Eroğlu, E.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized carbon nanotubes: Biomedical applications. Int. J. Nanomedicine, 2012, 7(5361), 5361-5374. PMID: 23091380
- Kharissova, O.V.; Kharisov, B.I.; de Casas Ortiz, E.G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances, 2013, 3(47), 24812-24852. doi: 10.1039/c3ra43852j
- Tayyab, S.; Naqvi, R.; Rasheed, T.; Hussain, D.; Najam, M.; Majeed, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq., 2019, 297, 111919.
- Jackman, H.; Jackman, H. Mechanical properties of carbon nanotubes and nanofibers; Karlstad University Studies, 2012, pp. 1-71.
- Singh, I.; Rehni, A.K.; Kumar, P. Fullerenes, carbon nanotubes : Synthesis, properties and pharmaceutical applications. Fuller nanotub Car N., 2013, 17(4), 361-377.
- Raval, J.P.; Joshi, P.; Chejara, D.R. Carbon nanotube for targeted drug delivery. In: Woodhead Publishing Series in Biomaterials, Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Sawston, Cambridge, 2018, pp. 203-216.
- Kumar, S.P.; Gunasundari, E. Nanocomposites: Recent trends and engineering applications. Nano Hybrids and Composites, 2018, 20, 65-80. doi: 10.4028/ href='www.scientific.net/NHC.20.65' target='_blank'>www.scientific.net/NHC.20.65
- Mallakpour, S.; Soltanian, S. RSC Advances Fabrication and Applications. RSC Advances, 2016, (111), 109916-109935. doi: 10.1039/C6RA24522F
- Saka, C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Crit. Rev. Anal. Chem., 2018, 48(1), 1-14. doi: 10.1080/10408347.2017.1356699 PMID: 28722465
- Huang, Z.; Xi, L.; Subhani, Q.; Yan, W.; Guo, W.; Zhu, Y. Covalent functionalization of multi-walled carbon nanotubes with quaternary ammonium groups and its application in ion chromatography. Carbon, 2013, 62, 127-134. doi: 10.1016/j.carbon.2013.06.004
- Sadegh, H.; Shahryari-ghoshekandi, R.; Kazemi, M. Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int. Nano Lett., 2014, 4(4), 129-135. doi: 10.1007/s40089-014-0128-1
- Meng, L.; Fu, C.; Lu, Q. Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci., 2009, 19(7), 801-810. doi: 10.1016/j.pnsc.2008.08.011
- Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L.; Nicole, S.; Alisaraie, L. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm., 2017, 524(1-2), 41-54. doi: 10.1016/j.ijpharm.2017.03.017 PMID: 28300630
- Sharma, S.; Kumar, P.; Chandra, R. Mechanical and thermal properties of graphenecarbon nanotube-reinforced metal matrix composites: A molecular dynamics study. J. Compos. Mater., 2017, 51(23), 3299-3313. doi: 10.1177/0021998316682363
- Wulan, P.P.D.K.; Ulwani, S.H.; Wulandari, H.; Purwanto, W.W.; Mulia, K. The effect of hydrochloric acid addition to increase carbon nanotubes dispersibility as drug delivery system by covalent functionalization. In IOP conference series. Mater. Sci. Eng. C, 2018, 1, 012013.
- Hashemzadeh, H.; Raissi, H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: A molecular dynamics simulation study. J. Mol. Model., 2017, 23(8), 222. doi: 10.1007/s00894-017-3391-z PMID: 28702805
- Zhou, Y.; Fang, Y.; Ramasamy, R. Non-covalent functionalization of carbon nanotubes for electrochemical. Sensors, 2019, 19(2), 392. doi: 10.3390/s19020392 PMID: 30669367
- Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4(6), 1948-1963. doi: 10.1039/c2nr11757f PMID: 22337209
- Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors, 2019, 19(2), 392. doi: 10.3390/s19020392
- Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558. doi: 10.1016/j.ijpharm.2018.07.027 PMID: 29997043
- Sharma, S.; Naskar, S.; Kuotsu, K. Metronomic chemotherapy of carboplatin-loaded PEGylated MWCNTs: Synthesis, characterization and in vitro toxicity in human breast cancer. Carbon Lett., 2020, 30(4), 435-447. doi: 10.1007/s42823-019-00113-0
- Yu, S.; Zhang, Y.; Chen, L.; Li, Q.; Du, J.; Gao, Y.; Zhang, L.; Yang, Y. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1103-1110. doi: 10.3892/etm.2016.3444 PMID: 30116361
- Mehra, N.K.; Jain, N.K. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol. Pharm., 2015, 12(2), 630-643. doi: 10.1021/mp500720a PMID: 25517904
- Yang, S.; Wang, Z.; Ping, Y.; Miao, Y.; Xiao, Y.; Qu, L.; Zhang, L.; Hu, Y.; Wang, J. PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: Synthesis, characterization, and in vitro evaluation. Beilstein J. Nanotechnol., 2020, 11(1), 1728-1741. doi: 10.3762/bjnano.11.155 PMID: 33224703
- Mehra, N.K.; Jain, N.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J. Drug Target., 2013, 21(8), 745-758. doi: 10.3109/1061186X.2013.813028 PMID: 23822734
- Cao, X.; Du, X.; Jiao, H.; An, Q.; Chen, R.; Fang, P.; Wang, J.; Yu, B. Carbohydrate-based drugs launched during 2000-2021. Acta Pharm. Sin. B, 2022, 12(10), 3783-3821. doi: 10.1016/j.apsb.2022.05.020 PMID: 36213536
- Gim, S.; Zhu, H.; Seeberger, P.H.; Delbianco, M. Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(5), e1558. doi: 10.1002/wnan.1558
- Al-Sawaftah, N.M.; Abusamra, R.H.; Husseini, G.A. Carbohydrate-functionalized liposomes in cancer therapy. Curr. Cancer Ther. Rev., 2021, 17(1), 4-20. doi: 10.2174/1573394716999200626144921
- Apostol, C.R.; Hay, M.; Polt, R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides, 2020, 131(170369), 170369. doi: 10.1016/j.peptides.2020.170369 PMID: 32673700
- Khan, H.; Mirzaei, H.R.; Amiri, A.; Akkol, K.E.; Ashhad Halimi, S.M.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol., 2021, 69, 24-42. doi: 10.1016/j.semcancer.2019.12.004 PMID: 31870939
- Chen, F.; Huang, G.; Huang, H. Sugar ligand-mediated drug delivery. Future Med. Chem., 2020, 12(2), 161-171. doi: 10.4155/fmc-2019-0114 PMID: 31718289
- Gao, H.; Huang, G. Synthesis, anticancer activity and cytotoxicity of galactosylated epothilone B. Bioorg. Med. Chem., 2018, 26(20), 5578-5581. doi: 10.1016/j.bmc.2018.10.005 PMID: 30318441
- Gadekar, A.; Bhowmick, S.; Pandit, A. A glycotherapeutic approach to functionalize biomaterials-based systems. Adv. Funct. Mater., 2020, 30(44), 1910031. doi: 10.1002/adfm.201910031
- Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov., 2018, 23(5), 1126-1138. PMID: 29501708
- Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev., 2019, 151-152, 94-129. doi: 10.1016/j.addr.2019.09.002 PMID: 31513827
- Liu, R.; Li, H.; Gao, X.; Mi, Q.; Zhao, H.; Gao, Q. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1. Biochem. Biophys. Res. Commun., 2017, 487(1), 34-40. doi: 10.1016/j.bbrc.2017.04.004 PMID: 28385528
- Fahrenholtz, C.D.; Hadimani, M.; King, S.B.; Torti, S.V.; Singh, R. Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine, 2015, 10(16), 2481-2497. doi: 10.2217/nnm.15.90 PMID: 26296098
- Dong, Z.; Wang, Q.; Huo, M.; Zhang, N.; Li, B.; Li, H.; Xu, Y.; Chen, M.; Hong, H.; Wang, Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen, 2019, 8(7), 915-921. doi: 10.1002/open.201900126 PMID: 31338275
- Sharma, P.; Jain, K.; Jain, N.K.; Mehra, N.K. Ex vivo and in vivo performance of anti-cancer drug loaded carbon nanotubes. J. Drug Deliv. Sci. Technol., 2017, 41, 134-143. doi: 10.1016/j.jddst.2017.07.011
- Ozgen, P.S.O.; Atasoy, S.; Kurt, B.Z.; Durmus, Z.; Yigit, G.; Dag, A. Glycopolymer decorated multi-walled carbon nanotubes for dual-targeted breast cancer therapy. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 3123-3137.
- Passi, A.; Vigetti, D. Hyaluronan as tunable drug delivery system. Adv. Drug Deliv. Rev., 2019, 146, 83-96. doi: 10.1016/j.addr.2019.08.006 PMID: 31421148
- Tripodo, G.; Trapani, A.; Torre, M.L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 400-416. doi: 10.1016/j.ejpb.2015.03.032 PMID: 26614559
- Gallo, N.; Nasser, H.; Salvatore, L.; Natali, M.L.; Campa, L.; Mahmoud, M.; Capobianco, L.; Sannino, A.; Madaghiele, M. Hyaluronic acid for advanced therapies: Promises and challenges. Eur. Polym. J., 2019, 117, 134-147. doi: 10.1016/j.eurpolymj.2019.05.007
- Prajapati, S.K.; Jain, A.; Shrivastava, C.; Jain, A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol., 2019, 123, 691-703. doi: 10.1016/j.ijbiomac.2018.11.116 PMID: 30445095
- Liu, D.; Zhang, Q.; Wang, J.; Fan, L.; Zhu, W.; Cai, D. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie, 2019, 74(2), 83-90. PMID: 30782256
- Singhai, N.J.; Maheshwari, R.; Ramteke, S. CD44 receptor targeted 'smart'multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun., 2020, 35(100235), 1-12.
- Arpicco, S.; Bartkowski, M.; Barge, A.; Zonari, D.; Serpe, L.; Milla, P.; Dosio, F.; Stella, B.; Giordani, S. Effects of the molecular weight of hyaluronic acid in a carbon nanotube drug delivery conjugate. Front Chem., 2020, 8(1164), 578008. doi: 10.3389/fchem.2020.578008 PMID: 33381490
- Zhao, L.P.; Yang, G.; Zhang, X.M.; Qu, F. Development of aptamer screening against proteins and its applications. Chin. J. Anal. Chem., 2020, 48(5), 560-572. doi: 10.1016/S1872-2040(20)60012-3
- Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem., 2017, 1(10), 0076. doi: 10.1038/s41570-017-0076
- Vahed, Z.S.; Fathi, N.; Samiei, M.; Dizaj, M.S.; Sharifi, S. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J. Drug Target., 2019, 27(3), 292-299. doi: 10.1080/1061186X.2018.1491978 PMID: 29929413
- Gu, F.; Hu, C.; Xia, Q.; Gong, C.; Gao, S.; Chen, Z. Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J. Nanopart. Res., 2018, 20(11), 303. doi: 10.1007/s11051-018-4407-z PMID: 30524190
- Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazinepolyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60. doi: 10.1016/j.ijpharm.2015.02.031 PMID: 25712164
- Taghavi, S. HashemNia, A.; Mosaffa, F.; Askarian, S.; Abnous, K.; Ramezani, M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 140, 28-39. doi: 10.1016/j.colsurfb.2015.12.021 PMID: 26731195
- Dutt, T.S.; Saxena, R.K. Uptake of carboxylated fluorescent nano-diamonds by resting and activated T and B lymphocytes and comparison with carbon nanotube uptake. Int. J. Nano. Med. Eng., 2019, 4(7), 61-68.
- Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-Glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473. doi: 10.1021/acsami.8b11974 PMID: 30188117
- Kohshour, O.M.; Mirzaie, S.; Zeinali, M.; Amin, M.; Said Hakhamaneshi, M.; Jalaili, A.; Mosaveri, N.; Jamalan, M. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des., 2014, 83(3), 259-265. doi: 10.1111/cbdd.12244 PMID: 24118702
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397. doi: 10.3390/polym12061397
- Bafkary, R.; Khoee, S. Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery. RSC Advances, 2016, 6(86), 82553-82565. doi: 10.1039/C6RA12463A
- Wei, X.; Wang, L.; Sun, W.; Zhang, M.; Ma, H.; Zhang, Y.; Zhang, X.; Li, S. C-type lectin B (SpCTL-B) regulates the expression of antimicrobial peptides and promotes phagocytosis in mud crab Scylla paramamosain. Dev. Comp. Immunol., 2018, 84, 213-229. doi: 10.1016/j.dci.2018.02.016 PMID: 29476770
- Boncel, S.; Müller, K.H.; Skepper, J.N.; Walczak, K.Z.; Koziol, K.K.K. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials, 2011, 32(30), 7677-7686. doi: 10.1016/j.biomaterials.2011.06.055 PMID: 21764122
- Joshi, M.; Kumar, P.; Kumar, R.; Sharma, G.; Singh, B.; Katare, O.P.; Raza, K. Aminated carbon-based "cargo vehicles" for improved delivery of methotrexate to breast cancer cells. Mater. Sci. Eng. C, 2017, 75, 1376-1388. doi: 10.1016/j.msec.2017.03.057 PMID: 28415429
- Narei, H.; Ghasempour, R.; Akhavan, O. Toxicity and Safety Issues of Carbon Nanotubes.In: Carbon nanotube-reinforced polymers; Elsevier Science B.V: Amsterdam, 2018.
- Poulsen, S.S.; Jackson, P.; Kling, K.; Knudsen, K.B.; Skaug, V.; Kyjovska, Z.O.; Thomsen, B.L.; Clausen, P.A.; Atluri, R.; Berthing, T.; Bengtson, S.; Wolff, H.; Jensen, K.A.; Wallin, H.; Vogel, U. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology, 2016, 10(9), 1263-1275. doi: 10.1080/17435390.2016.1202351 PMID: 27323647
- Taylor-Just, A.J.; Ihrie, M.D.; Duke, K.S.; Lee, H.Y.; You, D.J.; Hussain, S.; Kodali, V.K.; Ziemann, C.; Creutzenberg, O.; Vulpoi, A.; Turcu, F.; Potara, M.; Todea, M.; van den Brule, S.; Lison, D.; Bonner, J.C. The pulmonary toxicity of carboxylated or aminated multi-walled carbon nanotubes in mice is determined by the prior purification method. Part. Fibre Toxicol., 2020, 17(1), 60. doi: 10.1186/s12989-020-00390-y PMID: 31900181
- Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol. In Vitro, 2017, 42, 292-298. doi: 10.1016/j.tiv.2017.04.027 PMID: 28483489
- Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal., 2019, 9(5), 293-300. doi: 10.1016/j.jpha.2019.04.003 PMID: 31929938
- Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Zhang, Z.; Wang, L. Li, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomedicine, 2011, 6, 2641-2652. doi: 10.2147/IJN.S24167 PMID: 22114495
- Ghosh, S.; Dutta, S.; Sarkar, A.; Kundu, M.; Sil, P.C. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf. B Biointerfaces, 2021, 197, 111404. doi: 10.1016/j.colsurfb.2020.111404 PMID: 33142257
- Zhang, X.L.X. Preparation method of carbon nanotube-chitosanphycocyanin nanoparticles. Patent 02274510A, 2012.
- Chen, J.; Liu, H. Polymer and method for using the polymer for solubilizing nanotubes. Patent US20077244407 2007.
- Ford, W.E.; Wessels, J.; Yasuda, A. Method and apparatus for producing carbon nanotubes. Patent US20060014375, 2006.
- Naumov, A.V. System and method for antibiotic delivery using single-walled carbon nanotubes. Patent 16366007, 2021.
- Scheinberg, D.A.; McDevitt, M.R.; Villa, C.H.; Mulvey, J.J. Targeted self-assembly of functionalized carbon nanotubes on tumors. Patent US9976137B2, 2021.
- Hongjuan, Y.; Yingge, Z.; Yan, L. A drug delivery system comprising a cancer stem cell-targeted carbon nanotube, preparation and use thereof. Canadian Patent Application, CA2957805A1, 2016.
- Altadena, M.G.; Aria, A. Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface. United States Patent Application Publication, US20150238742A1, 2015.
- Chen, W.R. Immunologically modified carbon nanotubes for cancer treatment. United States Patent, US8664198B2, 2014.
- Mohapatra, S.S.; Kumar, A. Method of drug delivery by carbon nanotube-chitosan nanocomplexes. United States Patent, US8536324B2, 2013.
- Harrison, R.J., Jr; Resasco, D.E.; Neves, L.F.F. Compositions and methods for cancer treatment using targeted carbon nanotubes. United States Patent, US8518870B2, 2013.
- Kang, D.W.N.T.H. Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength. Patent WO2012060592A3, 2013.
- Dongwoo, K.T.N., Jr; Lee, S.K.S. Method for preparing a highly dispersive carbon nanotube for reducing in vivo immunotoxicity. Patent WO2012057511A2, 2012.
- Dai, H.; Sunnyvale, C.A.; Chen, R.J. Non-covalent sidewall functionalization of carbon nanotubes. United State Patent, US8029734B2, 2011.
Дополнительные файлы
