STAT3 Signaling Axis and Tamoxifen in Breast Cancer: A Promising Target for Treatment Resistance
- Авторлар: Zamanian M.Y.1, Golmohammadi M.2, Alalak A.3, Kamiab Z.4, Obaid R.5, Ramírez-Coronel A.6, Hjazi A.7, Abosaooda M.8, Mustafa Y.9, Heidari M.10, Verma A.11, Nazari Y.12, Bazmandegan G.13
-
Мекемелер:
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences
- College of Pharmacy, Al-Bayan University
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences
- Department of Biomedical Engineering, Al-Mustaqbal University College
- Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, University of Cuenca
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University
- College of Pharmacy, the Islamic University
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Sam Higginbottom University of Agriculture, Technology and Sciences
- , Saveh University of Medical Sciences
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences
- Шығарылым: Том 23, № 16 (2023)
- Беттер: 1819-1828
- Бөлім: Oncology
- URL: https://filvestnik.nvsu.ru/1871-5206/article/view/694355
- DOI: https://doi.org/10.2174/1871520623666230713101119
- ID: 694355
Дәйексөз келтіру
Толық мәтін
Аннотация
Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.
Негізгі сөздер
Авторлар туралы
Mohammad Zamanian
Department of Physiology, School of Medicine, Hamadan University of Medical Sciences
Email: info@benthamscience.net
Maryam Golmohammadi
Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences
Email: info@benthamscience.net
Ali Alalak
College of Pharmacy, Al-Bayan University
Email: info@benthamscience.net
Zahra Kamiab
Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences
Email: info@benthamscience.net
Rasha Obaid
Department of Biomedical Engineering, Al-Mustaqbal University College
Email: info@benthamscience.net
Andrés Ramírez-Coronel
Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, University of Cuenca
Email: info@benthamscience.net
Ahmed Hjazi
Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University
Email: info@benthamscience.net
Munther Abosaooda
College of Pharmacy, the Islamic University
Email: info@benthamscience.net
Yasser Mustafa
Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
Email: info@benthamscience.net
Mahsa Heidari
Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran
Email: info@benthamscience.net
Amita Verma
Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Sam Higginbottom University of Agriculture, Technology and Sciences
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Yashar Nazari
, Saveh University of Medical Sciences
Email: info@benthamscience.net
Gholamreza Bazmandegan
Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Marina, D.; Åse, K.R.; Buch-Larsen, K.; Linn, G.; Michael, A.; Peter, S. Influence of the anti‐oestrogens tamoxifen and letrozole on thyroid function in women with early and advanced breast cancer: A systematic review. Cancer Med., 2022, 12(2), 967-982. PMID: 35748065
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791. doi: 10.1097/CM9.0000000000001474 PMID: 33734139
- Shaath, H.; Elango, R.; Alajez, N.M. Molecular classification of breast cancer utilizing long non-coding RNA (lncRNA) transcriptomes identifies novel diagnostic lncRNA panel for triple-negative breast cancer. Cancers, 2021, 13(21), 5350. doi: 10.3390/cancers13215350 PMID: 34771513
- Li, M.; Tingting, Y.; Miaozhou, W.; Yanqiu, C.; Yingyuan, W. Advances in single-cell sequencing technology and its applications in triple-negative. Breast Cancer, 2021, 14, 465-474. PMID: 36540278
- Niraula, S.; Ocana, A.; Ennis, M.; Goodwin, P.J. Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: A meta-analysis. Breast Cancer Res. Treat., 2012, 134(2), 769-781. doi: 10.1007/s10549-012-2073-x PMID: 22562122
- Veronesi, U.; Boyle, P.; Goldhirsch, A. Orecchia, R.; Viale, G. Breas t cancer. Lancet, 2005, 365(9472), 1727-1741. doi: 10.1016/S0140-6736(05)66546-4 PMID: 15894099
- Group, E.B.C.T.C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005, 365(9472), 1687-1717. doi: 10.1016/S0140-6736(05)66544-0 PMID: 15894097
- Montagna, E.; Zagami, P.; Masiero, M.; Mazzocco, K.; Pravettoni, G.; Munzone, E. Assessing predictors of tamoxifen nonadherence in patients with early breast cancer. Patient Prefer. Adherence, 2021, 15, 2051-2061. doi: 10.2147/PPA.S285768 PMID: 34552323
- Francis, P.A.; Pagani, O.; Fleming, G.F.; Walley, B.A.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; Ciruelos, E.; Burstein, H.J.; Bonnefoi, H.R.; Bellet, M.; Martino, S.; Geyer, C.E., Jr; Goetz, M.P.; Stearns, V.; Pinotti, G.; Puglisi, F.; Spazzapan, S.; Climent, M.A.; Pavesi, L.; Ruhstaller, T.; Davidson, N.E.; Coleman, R.; Debled, M.; Buchholz, S.; Ingle, J.N.; Winer, E.P.; Maibach, R.; Rabaglio-Poretti, M.; Ruepp, B.; Di Leo, A.; Coates, A.S.; Gelber, R.D.; Goldhirsch, A.; Regan, M.M. Tailoring adjuvant endocrine therapy for premenopausal breast cancer. N. Engl. J. Med., 2018, 379(2), 122-137. doi: 10.1056/NEJMoa1803164 PMID: 29863451
- Burstein, H.J.; Lacchetti, C.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Solky, A.J.; Stearns, V.; Winer, E.P.; Griggs, J.J. Adjuvant endocrine therapy for women with hormone receptorpositive breast cancer: American Society of Clinical Oncology clinical practice guideline update on ovarian suppression. J. Clin. Oncol., 2016, 34(14), 1689-1701. doi: 10.1200/JCO.2015.65.9573 PMID: 26884586
- Traboulsi, T.; El Ezzy, M.; Gleason, J.L.; Mader, S. Antiestrogens: Structure-activity relationships and use in breast cancer treatment. J. Mol. Endocrinol., 2017, 58(1), R15-R31. doi: 10.1530/JME-16-0024 PMID: 27729460
- Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24. doi: 10.1016/j.pharmthera.2017.12.012 PMID: 29289555
- Tsoi, H.; You, C.P.; Leung, M.H.; Man, E.P.S.; Khoo, U.S. Targeting ribosome biogenesis to combat tamoxifen resistance in ER+ve breast cancer. Cancers, 2022, 14(5), 1251. doi: 10.3390/cancers14051251 PMID: 35267559
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; Hayes, D.F. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med., 2017, 377(19), 1836-1846. doi: 10.1056/NEJMoa1701830 PMID: 29117498
- Ali, S.; Rasool, M.; Chaoudhry, H.; Pushparaj, P.N.; Jha, P.; Hafiz, A.; Mahfooz, M.; Sami, G.A.; Kamal, M.A.; Bashir, S.; Ali, A.; Jamal, M.S. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation, 2016, 12(3), 135-139. doi: 10.6026/97320630012135 PMID: 28149048
- Sanyakamdhorn, S.; Agudelo, D.; Bekale, L.; Tajmir-Riahi, H.A. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers. Colloids Surf. B Biointerfaces, 2016, 145, 55-63. doi: 10.1016/j.colsurfb.2016.04.035 PMID: 27137803
- Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, C.; Wang, Y.C.; Dowsett, M.; Ingle, J.; Peto, R. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet, 2011, 378(9793), 771-784. doi: 10.1016/S0140-6736(11)60993-8 PMID: 21802721
- Helland, T.; Alsomairy, S.; Lin, C.; Søiland, H.; Mellgren, G.; Hertz, D.L. Generating a precision endoxifen prediction algorithm to advance personalized tamoxifen treatment in patients with breast cancer. J. Pers. Med., 2021, 11(3), 201. doi: 10.3390/jpm11030201 PMID: 33805613
- Yu, D.; Qi, S.; Guan, X.; Yu, W.; Yu, X.; Cai, M.; Li, Q.; Wang, W.; Zhang, W.; Qin, J.J. Inhibition of STAT3 signaling pathway by terphenyllin suppresses growth and metastasis of gastric cancer. Front. Pharmacol., 2022, 13, 870367. doi: 10.3389/fphar.2022.870367 PMID: 35401187
- Mou, J.; Huang, M.; Wang, F.; Xu, X.; Xie, H.; Lu, H.; Li, M.; Li, Y.; Kong, W.; Chen, J.; Xiao, Y.; Chen, Y.; Wang, C.; Ren, J. HMGN5 escorts oncogenic STAT3 signaling by regulating the chromatin landscape in breast cancer tumorigenesis. Mol. Cancer Res., 2022, 20(12), 1724-1738. doi: 10.1158/1541-7786.MCR-22-0241 PMID: 36066963
- Li, Y.; Wang, H.; Liu, W.; Hou, J.; Xu, J.; Guo, Y.; Hu, P. Cratoxylumxanthone C, a natural xanthone, inhibits lung cancer proliferation and metastasis by regulating STAT3 and FAK signal pathways. Front. Pharmacol., 2022, 13, 920422. doi: 10.3389/fphar.2022.920422 PMID: 36016565
- He, S.L.; Zhao, X.; Yi, S.J. CircAHNAK upregulates EIF2B5 expression to inhibit the progression of ovarian cancer by modulating the JAK2/STAT3 signaling pathway. Carcinogenesis, 2022, 43(10), 941-955. doi: 10.1093/carcin/bgac053 PMID: 35710311
- Yan, R.; Lin, F.; Hu, C.; Tong, S. Association between STAT3 polymorphisms and cancer risk: A meta-analysis. Mol. Genet. Genomics, 2015, 290(6), 2261-2270. doi: 10.1007/s00438-015-1074-y PMID: 26063618
- Yuan, K.; Ye, J.; Liu, Z.; Ren, Y.; He, W.; Xu, J.; He, Y.; Yuan, Y. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 9. doi: 10.1186/s13046-019-1514-3 PMID: 31928530
- Wingelhofer, B.; Neubauer, H.A.; Valent, P.; Han, X.; Constantinescu, S.N.; Gunning, P.T.; Müller, M.; Moriggl, R. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia, 2018, 32(8), 1713-1726. doi: 10.1038/s41375-018-0117-x PMID: 29728695
- Jaśkiewicz, A.; Domoradzki, T.; Pająk, B. Targeting the JAK2/STAT3 pathwayCan we compare it to the two faces of the God Janus? Int. J. Mol. Sci., 2020, 21(21), 8261. doi: 10.3390/ijms21218261 PMID: 33158194
- Gu, Y.; Mohammad, I.; Liu, Z. Overview of the STAT 3 signaling pathway in cancer and the development of specific inhibitors. Oncol. Lett., 2020, 19(4), 2585-2594. doi: 10.3892/ol.2020.11394 PMID: 32218808
- Johnson, D.E.; O'Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248. doi: 10.1038/nrclinonc.2018.8 PMID: 29405201
- Liang, Y.; Kong, D.; Zhang, Y.; Li, S.; Li, Y.; Ramamoorthy, A.; Ma, J. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol. Bioprocess Eng.; BBE, 2020, 25(2), 197-205. doi: 10.1007/s12257-019-0326-9
- Tsoi, H.; Man, E.P.S.; Chau, K.M.; Khoo, U.S. Targeting the IL-6/STAT3 signalling cascade to reverse tamoxifen resistance in estrogen receptor positive breast cancer. Cancers, 2021, 13(7), 1511. doi: 10.3390/cancers13071511 PMID: 33806019
- Liu, W.H.; Chen, M.T.; Wang, M.L.; Lee, Y.Y.; Chiou, G.Y.; Chien, C.S.; Huang, P.I.; Chen, Y.W.; Huang, M.C.; Chiou, S.H.; Shih, Y.H.; Ma, H.I. Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget, 2015, 6(3), 1750-1768. doi: 10.18632/oncotarget.2737 PMID: 25638155
- Jubair, S.; Alkhateeb, A.; Tabl, A.A.; Rueda, L.; Ngom, A. A novel approach to identify subtype-specific network biomarkers of breast cancer survivability. Netw. Model. Anal. Health Inform. Bioinform., 2020, 9(1), 43. doi: 10.1007/s13721-020-00249-4
- Bui, Q.T. Im, J.H.; Jeong, S.B.; Kim, Y.M.; Lim, S.C.; Kim, B.; Kang, K.W. Essential role of Notch4/STAT3 signaling in epithelialmesenchymal transition of tamoxifen-resistant human breast cancer. Cancer Lett., 2017, 390, 115-125. doi: 10.1016/j.canlet.2017.01.014 PMID: 28108315
- Zhu, N.; Zhang, J.; Du, Y.; Qin, X.; Miao, R.; Nan, J.; Chen, X.; Sun, J.; Zhao, R.; Zhang, X.; Shi, L.; Li, X.; Lin, Y.; Wei, W.; Mao, A.; Zhang, Z.; Stark, G.R.; Wang, Y.; Yang, J. Loss of ZIP facilitates JAK2-STAT3 activation in tamoxifen-resistant breast cancer. Proc. Natl. Acad. Sci., 2020, 117(26), 15047-15054. doi: 10.1073/pnas.1910278117 PMID: 32532922
- Ishii, Y.; Waxman, S.; Germain, D. Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res., 2008, 68(3), 852-860. doi: 10.1158/0008-5472.CAN-07-2879 PMID: 18245487
- Yi, E.H.; Lee, C.S.; Lee, J.K.; Lee, Y.J.; Shin, M.K.; Cho, C.H.; Kang, K.W.; Lee, J.W.; Han, W.; Noh, D.Y.; Kim, Y.N.; Cho, I.H.; Ye, S. STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res., 2013, 11(1), 31-42. doi: 10.1158/1541-7786.MCR-12-0217 PMID: 23074171
- Wang, X.; Wang, G.; Zhao, Y.; Liu, X.; Ding, Q.; Shi, J.; Ding, Y.; Wang, S. STAT3 mediates resistance of CD44+CD24-/low breast cancer stem cells to tamoxifen in vitro. J. Biomed. Res., 2012, 26(5), 325-335. doi: 10.7555/JBR.26.20110050 PMID: 23554768
- Simões, B.M.; Santiago-Gómez, A.; Chiodo, C.; Moreira, T.; Conole, D.; Lovell, S.; Alferez, D.; Eyre, R.; Spence, K.; Sarmiento-Castro, A.; Kohler, B.; Morisset, L.; Lanzino, M.; Andò, S.; Marangoni, E.; Sims, A.H.; Tate, E.W.; Howell, S.J.; Clarke, R.B. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39(25), 4896-4908. doi: 10.1038/s41388-020-1335-z PMID: 32472077
- Kilker, R.L.; Planas-Silva, M.D. Cyclin D1 is necessary for tamoxifen-induced cell cycle progression in human breast cancer cells. Cancer Res., 2006, 66(23), 11478-11484. doi: 10.1158/0008-5472.CAN-06-1755 PMID: 17145896
- Shi, Q.; Li, Y.; Li, S.; Jin, L.; Lai, H.; Wu, Y.; Cai, Z.; Zhu, M.; Li, Q.; Li, Y.; Wang, J.; Liu, Y.; Wu, Z.; Song, E.; Liu, Q. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat. Commun., 2020, 11(1), 5513. doi: 10.1038/s41467-020-19349-w PMID: 33139730
- Jirström, K.; Stendahl, M.; Rydén, L.; Kronblad, Å.; Bendahl, P.O.; Stål, O.; Landberg, G. Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res., 2005, 65(17), 8009-8016. doi: 10.1158/0008-5472.CAN-05-0746 PMID: 16140974
- Stendahl, M.; Kronblad, Å.; Rydén, L.; Emdin, S.; Bengtsson, N.O.; Landberg, G. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br. J. Cancer, 2004, 90(10), 1942-1948. doi: 10.1038/sj.bjc.6601831 PMID: 15138475
- Parakh, S.; Ernst, M.; Poh, A.R. Multicellular effects of STAT3 in non-small cell lung cancer: Mechanistic insights and therapeutic opportunities. Cancers, 2021, 13(24), 6228. doi: 10.3390/cancers13246228 PMID: 34944848
- Santoni, M.; Miccini, F.; Cimadamore, A.; Piva, F.; Massari, F.; Cheng, L.; Lopez-Beltran, A.; Montironi, R.; Battelli, N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin. Investig. Drugs, 2021, 30(3), 245-251. doi: 10.1080/13543784.2021.1891222 PMID: 33599169
- Chalikonda, G.; Lee, H.; Sheik, A.; Huh, Y.S. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol. Cell. Biochem., 2021, 476(9), 3219-3228. doi: 10.1007/s11010-021-04156-8 PMID: 33866491
- Galoczova, M.; Coates, P.; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell. Mol. Biol. Lett., 2018, 23(1), 12. doi: 10.1186/s11658-018-0078-0 PMID: 29588647
- Decker, T.; Kovarik, P.; Meinke, A. GAS elements: A few nucleotides with a major impact on cytokine-induced gene expression. J. Interferon Cytokine Res., 1997, 17(3), 121-134. doi: 10.1089/jir.1997.17.121 PMID: 9085936
- Andrés, R.M.; Hald, A.; Johansen, C.; Kragballe, K.; Iversen, L. Studies of Jak/STAT3 expression and signalling in psoriasis identifies STAT3-Ser727 phosphorylation as a modulator of transcriptional activity. Exp. Dermatol., 2013, 22(5), 323-328. doi: 10.1111/exd.12128 PMID: 23614738
- Huang, Q.; Zhong, Y.; Dong, H.; Zheng, Q.; Shi, S.; Zhu, K.; Qu, X.; Hu, W.; Zhang, X.; Wang, Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur. J. Med. Chem., 2020, 187, 111922. doi: 10.1016/j.ejmech.2019.111922 PMID: 31810784
- Yuan, Z.; Guan, Y.; Chatterjee, D.; Chin, Y.E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science, 2005, 307(5707), 269-273. doi: 10.1126/science.1105166 PMID: 15653507
- Park, I.H.; Li, C. Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J. Mol. Recognit., 2011, 24(2), 254-265. doi: 10.1002/jmr.1047 PMID: 21360612
- Li, L.X.; Zhou, J.X.; Calvet, J.P.; Godwin, A.K.; Jensen, R.A.; Li, X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis., 2018, 9(3), 326. doi: 10.1038/s41419-018-0347-x PMID: 29487338
- McDaniel, J.M.; Varley, K.E.; Gertz, J.; Savic, D.S.; Roberts, B.S.; Bailey, S.K.; Shevde, L.A.; Ramaker, R.C.; Lasseigne, B.N.; Kirby, M.K.; Newberry, K.M.; Partridge, E.C.; Jones, A.L.; Boone, B.; Levy, S.E.; Oliver, P.G.; Sexton, K.C.; Grizzle, W.E.; Forero, A.; Buchsbaum, D.J.; Cooper, S.J.; Myers, R.M. Genomic regulation of invasion by STAT3 in triple negative breast cancer. Oncotarget, 2017, 8(5), 8226-8238. doi: 10.18632/oncotarget.14153 PMID: 28030809
- Moreira, M.P.; da Conceição Braga, L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290. doi: 10.1016/j.yexcr.2018.01.018 PMID: 29352988
- Sasidharan Nair, V.; Toor, S.M.; Ali, B.R.; Elkord, E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin. Ther. Targets, 2018, 22(6), 547-557. doi: 10.1080/14728222.2018.1471137 PMID: 29702007
- Demaria, M.; Giorgi, C.; Lebiedzinska, M.; Esposito, G.; D'Angeli, L.; Bartoli, A.; Gough, D.J.; Turkson, J.; Levy, D.E.; Watson, C.J.; Wieckowski, M.R.; Provero, P.; Pinton, P.; Poli, V.A. STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2(11), 823-842. doi: 10.18632/aging.100232 PMID: 21084727
- Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Abdel-Aziz, M. STAT3 transcription factor as target for anti-cancer therapy. Pharmacol. Rep., 2020, 72(5), 1101-1124. doi: 10.1007/s43440-020-00156-5 PMID: 32880101
- Farkhondeh, T.; Samarghandian, S. Antidotal effects of curcumin against agents-induced cardiovascular toxicity. Cardiovasc. Hematol. Disord. Drug Targets, 2016, 16(1), 30-37. doi: 10.2174/1871529X16666160802144510 PMID: 27492624
- Ma, M.; Huang, W.; Kong, D. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int. Immunopharmacol., 2018, 59, 148-156. doi: 10.1016/j.intimp.2018.04.013 PMID: 29655056
- Hao, S.; Chen, X.; Wang, F.; Shao, Q.; Liu, J.; Zhao, H.; Yuan, C.; Ren, H.; Mao, H. Breast cancer cellderived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells. Carcinogenesis, 2018, 39(12), 1488-1496. doi: 10.1093/carcin/bgy136 PMID: 30321288
- Xie, Q.; Yang, Z.; Huang, X.; Zhang, Z.; Li, J.; Ju, J.; Zhang, H.; Ma, J. Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J. Hematol. Oncol., 2019, 12(1), 60. doi: 10.1186/s13045-019-0744-3 PMID: 31186039
- Tawara, K.; Scott, H.; Emathinger, J.; Wolf, C.; LaJoie, D.; Hedeen, D.; Bond, L.; Montgomery, P.; Jorcyk, C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget, 2019, 10(21), 2068-2085. doi: 10.18632/oncotarget.26699 PMID: 31007849
- Tawara, K.; Scott, H.; Emathinger, J.; Ide, A.; Fox, R.; Greiner, D.; LaJoie, D.; Hedeen, D.; Nandakumar, M.; Oler, A.J.; Holzer, R.; Jorcyk, C. Co-Expression of VEGF and IL-6 family cytokines is associated with decreased survival in HER2 negative breast cancer patients: Subtype-specific IL-6 family cytokine-mediated VEGF secretion. Transl. Oncol., 2019, 12(2), 245-255. doi: 10.1016/j.tranon.2018.10.004 PMID: 30439625
- Chun, J.; Song, K.; Kim, Y.S. Sesquiterpene lactones-enriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA-MB-231 breast cancer cells. Phytother. Res., 2018, 32(12), 2501-2509. doi: 10.1002/ptr.6189 PMID: 30251272
- Monteleone, E.; Orecchia, V.; Corrieri, P.; Schiavone, D.; Avalle, L.; Moiso, E.; Savino, A.; Molineris, I.; Provero, P.; Poli, V. SP1 and STAT3 functionally synergize to induce the RhoU Small GTPase and a subclass of non-canonical WNT responsive genes correlating with poor prognosis in breast cancer. Cancers, 2019, 11(1), 101. doi: 10.3390/cancers11010101 PMID: 30654518
- Hedrick, E.; Cheng, Y.; Jin, U.H.; Kim, K.; Safe, S. Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget, 2016, 7(16), 22245-22256. doi: 10.18632/oncotarget.7925 PMID: 26967243
- Siersbæk, R.; Kumar, S.; Carroll, J.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev., 2018, 32(17-18), 1141-1154. doi: 10.1101/gad.316646.118 PMID: 30181360
- Hu, R.; Hilakivi-Clarke, L.; Clarke, R. Molecular mechanisms of tamoxifen-associated endometrial cancer. Oncol. Lett., 2015, 9(4), 1495-1501. doi: 10.3892/ol.2015.2962 PMID: 25788989
- Matutino, A.; Joy, A.A.; Brezden-Masley, C.; Chia, S.; Verma, S. Hormone receptor-positive, HER2-negative metastatic breast cancer: redrawing the lines. Curr. Oncol., 2018, 25(11), 131-141. doi: 10.3747/co.25.4000 PMID: 29910656
- Clarke, R.; Thompson, E.W.; Leonessa, F.; Lippman, J.; McGarvey, M.; Frandsen, T.L.; Brünner, N. Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Res. Treat., 1993, 24(3), 227-239. doi: 10.1007/BF01833263 PMID: 8435478
- Kim, M.R.; Choi, H.K.; Cho, K.B.; Kim, H.S.; Kang, K.W. Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Sci., 2009, 100(10), 1834-1841. doi: 10.1111/j.1349-7006.2009.01260.x PMID: 19681904
- Moon, S.Y.; Lee, H.; Kim, S.; Hong, J.H.; Chun, S.H.; Lee, H.Y.; Kang, K.; Kim, H.S.; Won, H.S.; Ko, Y.H. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer, 2021, 21(1), 931. doi: 10.1186/s12885-021-08641-7 PMID: 34407787
- Beebe, J.D.; Liu, J.Y.; Zhang, J.T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol. Ther., 2018, 191, 74-91. doi: 10.1016/j.pharmthera.2018.06.006 PMID: 29933035
- Madsen, M.W.; Reiter, B.E.; Lykkesfeldt, A.E. Differential expression of estrogen receptor mRNA splice variants in the tamoxifen resistant human breast cancer cell line, MCF-7/TAMR-1 compared to the parental MCF-7 cell line. Mol. Cell. Endocrinol., 1995, 109(2), 197-207. doi: 10.1016/0303-7207(95)03503-Y PMID: 7664983
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550. doi: 10.1073/pnas.0506580102 PMID: 16199517
- Ray, P.; Dutta, D.; Haque, I.; Nair, G.; Mohammed, J.; Parmer, M.; Kale, N.; Orr, M.; Jain, P.; Banerjee, S.; Reindl, K.M.; Mallik, S.; Kambhampati, S.; Banerjee, S.K.; Quadir, M. pH-sensitive Nanodrug carriers for Codelivery of ERK inhibitor and gemcitabine enhance the inhibition of tumor growth in pancreatic Cancer. Mol. Pharm., 2021, 18(1), 87-100. doi: 10.1021/acs.molpharmaceut.0c00499 PMID: 33231464
- Buettner, R.; Mora, L.B.; Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res., 2002, 8(4), 945-954. PMID: 11948098
- Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann. N. Y. Acad. Sci., 2006, 1091(1), 151-169. doi: 10.1196/annals.1378.063 PMID: 17341611
- Fletcher, S.; Turkson, J.; Gunning, P.T. Molecular approaches towards the inhibition of the signal transducer and activator of transcription 3 (Stat3) protein. ChemMedChem, 2008, 3(8), 1159-1168. doi: 10.1002/cmdc.200800123 PMID: 18683176
- Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of Disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol., 2005, 2(6), 315-324. doi: 10.1038/ncponc0195 PMID: 16264989
- Yang, J.; Liao, X.; Agarwal, M.K.; Barnes, L.; Auron, P.E.; Stark, G.R. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκ. B. Genes Dev., 2007, 21(11), 1396-1408. doi: 10.1101/gad.1553707 PMID: 17510282
- Yang, J.; Huang, J.; Dasgupta, M.; Sears, N.; Miyagi, M.; Wang, B.; Chance, M.R.; Chen, X.; Du, Y.; Wang, Y.; An, L.; Wang, Q.; Lu, T.; Zhang, X.; Wang, Z.; Stark, G.R. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci., 2010, 107(50), 21499-21504. doi: 10.1073/pnas.1016147107 PMID: 21098664
- Lee, H.; Zhang, P.; Herrmann, A.; Yang, C.; Xin, H.; Wang, Z.; Hoon, D.S.B.; Forman, S.J.; Jove, R.; Riggs, A.D.; Yu, H. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc. Natl. Acad. Sci., 2012, 109(20), 7765-7769. doi: 10.1073/pnas.1205132109 PMID: 22547799
- Li, L.; Shaw, P.E. Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J. Biol. Chem., 2002, 277(20), 17397-17405. doi: 10.1074/jbc.M109962200 PMID: 11859072
- Leung, E.; Kannan, N.; Krissansen, G.W.; Findlay, M.P.; Baguley, B.C. MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol. Ther., 2010, 9(9), 717-724. doi: 10.4161/cbt.9.9.11432 PMID: 20234184
- Alvarez, J.V.; Frank, D.A. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol. Ther., 2004, 3(11), 1045-1050. doi: 10.4161/cbt.3.11.1172 PMID: 15539936
- Ray, P.; Nair, G.; Ghosh, A.; Banerjee, S.; Golovko, M.Y.; Banerjee, S.K.; Reindl, K.M.; Mallik, S.; Quadir, M. Microenvironment-sensing, nanocarrier-mediated delivery of combination chemotherapy for pancreatic cancer. J. Cell Commun. Signal., 2019, 13(3), 407-420. doi: 10.1007/s12079-019-00514-w PMID: 30915617
- Massarweh, S.; Osborne, C.K.; Creighton, C.J.; Qin, L.; Tsimelzon, A.; Huang, S.; Weiss, H.; Rimawi, M.; Schiff, R. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res., 2008, 68(3), 826-833. doi: 10.1158/0008-5472.CAN-07-2707 PMID: 18245484
- Moerkens, M.; Zhang, Y.; Wester, L.; van de Water, B.; Meerman, J.H.N. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer, 2014, 14(1), 283. doi: 10.1186/1471-2407-14-283 PMID: 24758408
- Yuan, Y.; He, X.; Li, X.; Liu, Y.; Tang, Y.; Deng, H.; Shi, X. Narciclasine induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway. BMC Pharmacol. Toxicol., 2021, 22(1), 70. doi: 10.1186/s40360-021-00537-3 PMID: 34753517
- Bräutigam, J.; Bischoff, I.; Schürmann, C.; Buchmann, G.; Epah, J.; Fuchs, S.; Heiss, E.; Brandes, R.P.; Fürst, R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J. Mol. Cell. Cardiol., 2019, 135, 97-108. doi: 10.1016/j.yjmcc.2019.08.001 PMID: 31381906
- Lv, C.; Huang, Y.; Huang, R.; Wang, Q.; Zhang, H.; Jin, J.; Lu, D.; Zhou, Y.; Shen, Y.; Zhang, W.; Luan, X.; Liu, S. Narciclasine targets STAT3 via distinct mechanisms in tamoxifen-resistant breast cancer cells. Mol. Ther. Oncolytics, 2022, 24, 340-354. doi: 10.1016/j.omto.2021.12.025 PMID: 35118192
- Sato, K. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int. J. Mol. Sci., 2013, 14(6), 10761-10790. doi: 10.3390/ijms140610761 PMID: 23702846
- Silva, C.M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene, 2004, 23(48), 8017-8023. doi: 10.1038/sj.onc.1208159 PMID: 15489919
- Silva, C.M.; Shupnik, M.A. Integration of steroid and growth factor pathways in breast cancer: focus on signal transducers and activators of transcription and their potential role in resistance. Mol. Endocrinol., 2007, 21(7), 1499-1512. doi: 10.1210/me.2007-0109 PMID: 17456797
- Ball, D.P.; Lewis, A.M.; Williams, D.; Resetca, D.; Wilson, D.J.; Gunning, P.T. Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and non-selective alkylating agent. Oncotarget, 2016, 7(15), 20669-20679. doi: 10.18632/oncotarget.7838 PMID: 26942696
- Li, R.; Zhang, H.; Yu, W.; Chen, Y.; Gui, B.; Liang, J.; Wang, Y.; Sun, L.; Yang, X.; Zhang, Y.; Shi, L.; Li, Y.; Shang, Y. ZIP: A novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis. EMBO J., 2009, 28(18), 2763-2776. doi: 10.1038/emboj.2009.211 PMID: 19644445
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457. doi: 10.1038/ni.3153 PMID: 25898198
- Mauer, J.; Denson, J.L.; Brüning, J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol., 2015, 36(2), 92-101. doi: 10.1016/j.it.2014.12.008 PMID: 25616716
- Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; Jones, J.; Omarjee, S.; Alvarez-Fernandez, R.; Glont, S.; Aitken, S.J.; Kishore, K.; Cheeseman, D.; Rakha, E.A.; D'Santos, C.; Zwart, W.; Russell, A.; Brisken, C.; Carroll, J.S. IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell, 2020, 38(3), 412-423.e9. doi: 10.1016/j.ccell.2020.06.007 PMID: 32679107
- Jiang, M.; Chen, J.; Zhang, W.; Zhang, R.; Ye, Y.; Liu, P.; Yu, W.; Wei, F.; Ren, X.; Yu, J. Interleukin-6 Trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol., 2017, 8, 1840. doi: 10.3389/fimmu.2017.01840 PMID: 29326716
- Bachelot, T.; Ray-Coquard, I.; Menetrier-Caux, C.; Rastkha, M.; Duc, A.; Blay, J-Y. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer, 2003, 88(11), 1721-1726. doi: 10.1038/sj.bjc.6600956 PMID: 12771987
- Salgado, R.; Junius, S.; Benoy, I.; Van Dam, P.; Vermeulen, P.; Van Marck, E.; Huget, P.; Dirix, L.Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer, 2003, 103(5), 642-646. doi: 10.1002/ijc.10833 PMID: 12494472
- Hashizume, M.; Tan, S.L.; Takano, J.; Ohsawa, K.; Hasada, I.; Hanasaki, A.; Ito, I.; Mihara, M.; Nishida, K. Tocilizumab, a humanized anti-IL-6R antibody, as an emerging therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights. Int. Rev. Immunol., 2015, 34(3), 265-279. doi: 10.3109/08830185.2014.938325 PMID: 25099958
- Shou, J.; Massarweh, S.; Osborne, C.K.; Wakeling, A.E.; Ali, S.; Weiss, H.; Schiff, R. Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst., 2004, 96(12), 926-935. doi: 10.1093/jnci/djh166 PMID: 15199112
- Zhu, Y.; Yan, Y.; Principe, D.R.; Zou, X.; Vassilopoulos, A.; Gius, D. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer Metab., 2014, 2(1), 15. doi: 10.1186/2049-3002-2-15 PMID: 25332769
- Miyo, M.; Yamamoto, H.; Konno, M.; Colvin, H.; Nishida, N.; Koseki, J.; Kawamoto, K.; Ogawa, H.; Hamabe, A.; Uemura, M.; Nishimura, J.; Hata, T.; Takemasa, I.; Mizushima, T.; Doki, Y.; Mori, M.; Ishii, H. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br. J. Cancer, 2015, 113(3), 492-499. doi: 10.1038/bjc.2015.226 PMID: 26086877
- Jeong, S.M.; Xiao, C.; Finley, L.W.S.; Lahusen, T.; Souza, A.L.; Pierce, K.; Li, Y.H.; Wang, X.; Laurent, G.; German, N.J.; Xu, X.; Li, C.; Wang, R.H.; Lee, J.; Csibi, A.; Cerione, R.; Blenis, J.; Clish, C.B.; Kimmelman, A.; Deng, C.X.; Haigis, M.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell, 2013, 23(4), 450-463. doi: 10.1016/j.ccr.2013.02.024 PMID: 23562301
- Wang, Y.S.; Du, L.; Liang, X.; Meng, P.; Bi, L.; Wang, Y.; Wang, C.; Tang, B. Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine‐monophosphateactivated protein kinase alpha/mammalian target of rapamycin axis in mice. Hepatology, 2019, 69(4), 1614-1631. doi: 10.1002/hep.30421 PMID: 30552782
- Li, Y.; Zhou, Y.; Wang, F.; Chen, X.; Wang, C.; Wang, J.; Liu, T.; Li, Y.; He, B. SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg. Med. Chem., 2018, 26(14), 3861-3865. doi: 10.1016/j.bmc.2018.07.031 PMID: 30033389
- Huang, G.; Zhu, G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. OncoTargets Ther., 2018, 11, 3395-3400. doi: 10.2147/OTT.S157724 PMID: 29928130
- Xing, J.; Li, J.; Fu, L.; Gai, J.; Guan, J.; Li, Q. SIRT4 enhances the sensitivity of ER‐positive breast cancer to tamoxifen by inhibiting the IL‐6/STAT3 signal pathway. Cancer Med., 2019, 8(16), 7086-7097. doi: 10.1002/cam4.2557 PMID: 31573734
- Shi, Q.; Liu, T.; Zhang, X.; Geng, J.; He, X.; Nu, M.; Pang, D. Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncol. Lett., 2016, 12(4), 2606-2612. doi: 10.3892/ol.2016.5021 PMID: 27698834
- Stylianou, S.; Clarke, R.B.; Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res., 2006, 66(3), 1517-1525. doi: 10.1158/0008-5472.CAN-05-3054 PMID: 16452208
- Leong, K.G.; Karsan, A. Recent insights into the role of Notch signaling in tumorigenesis. Blood, 2006, 107(6), 2223-2233. doi: 10.1182/blood-2005-08-3329 PMID: 16291593
- Rizzo, P.; Miao, H.; D'Souza, G.; Osipo, C.; Yun, J.; Zhao, H.; Mascarenhas, J.; Wyatt, D.; Antico, G.; Hao, L.; Yao, K.; Rajan, P.; Hicks, C.; Siziopikou, K.; Selvaggi, S.; Bashir, A.; Bhandari, D.; Marchese, A.; Lendahl, U.; Qin, J-Z.; Tonetti, D.A.; Albain, K.; Nickoloff, B.J.; Miele, L.; Miele, L. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res., 2008, 68(13), 5226-5235. doi: 10.1158/0008-5472.CAN-07-5744 PMID: 18593923
- Lombardo, Y.; Faronato, M.; Filipovic, A.; Vircillo, V.; Magnani, L.; Coombes, R.C. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Res., 2014, 16(3), R62. doi: 10.1186/bcr3675 PMID: 24919951
- Kamakura, S.; Oishi, K.; Yoshimatsu, T.; Nakafuku, M.; Masuyama, N.; Gotoh, Y. Hes binding to STAT3 mediates crosstalk between Notch and JAKSTAT signalling. Nat. Cell Biol., 2004, 6(6), 547-554. doi: 10.1038/ncb1138 PMID: 15156153
- Chen, X.; Zha, X.; Chen, W.; Zhu, T.; Qiu, J.; Røe, O.D.; Li, J.; Wang, Z.; Yin, Y. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed. Pharmacother., 2013, 67(1), 22-30. doi: 10.1016/j.biopha.2012.10.001 PMID: 23199901
- O'Brien, S.N.; Welter, B.H.; Price, T.M. Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun., 1999, 259(3), 695-698. doi: 10.1006/bbrc.1999.0843 PMID: 10364481
- Ishikawa, M.; Kitayama, J.; Nagawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res., 2004, 10(13), 4325-4331. doi: 10.1158/1078-0432.CCR-03-0749 PMID: 15240518
- Fiorio, E.; Mercanti, A.; Terrasi, M.; Micciolo, R.; Remo, A.; Auriemma, A.; Molino, A.; Parolin, V.; Di Stefano, B.; Bonetti, F.; Giordano, A.; Cetto, G.L.; Surmacz, E. Leptin/HER2 crosstalk in breast cancer: In vitro study and preliminary in vivo analysis. BMC Cancer, 2008, 8(1), 305. doi: 10.1186/1471-2407-8-305 PMID: 18945363
- Papanikolaou, V.; Stefanou, N.; Dubos, S.; Papathanasiou, I.; Palianopoulou, M.; Valiakou, V.; Tsezou, A. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell. Oncol., 2015, 38(2), 155-164. doi: 10.1007/s13402-014-0213-5 PMID: 25539992
Қосымша файлдар
