Numerical simulation of laminar stoichiometric hydrogen–air flame structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Numerical simulations of flame structure and laminar burning velocity are performed for a stoichiometric hydrogen–air mixture under standard initial conditions. A comparative analysis is presented of the results obtained using three detailed kinetic mechanisms (DKMs), which differ both in the set of elementary reaction steps and reacting species and in the values of rate constants. It is found that the decrease in H2 concentration has a weakly pronounced two-stage character. In the presence of an additional initiation channel H2+O2=OH+OH, a pronounced second maximum of the intermediate H2O2 concentration appears. In the absence of this channel, a two-stage increase in OH concentration is observed. Based on an analysis of the sensitivity of heat release to reaction rate constants, the complex behavior of the OH and H2O2 profiles is explained. Despite the differences revealed, all three DKMs predict similar values of burning velocity and heat release rate.

全文:

受限制的访问

作者简介

A. Tereza

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

G. Agafonov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

E. Anderzhanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

A. Betev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

S. Khomik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

T. Cherepanova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

A. Cherepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

S. Medvedev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow

参考

  1. A.L. Sanchez, and F.A. Williams, Prog. Energy Combust. Sci. 41, 1 (2014). https://doi.org/10.1016/j.pecs.2013.10.002
  2. V.V. Gubernov. PhD. Theses. Moscow: Lebedev Phys. Inst., RAS, 2013.
  3. A.G. Shmakov. PhD. Theses. Novosibirsk: IKhKG SO RAS, 2022.
  4. S. Kudriakov, E. Studer, C. Bin, Int. J. Hydrogen Energy 36 (3), 2555 (2011). https://doi.org/10.1016/j.ijhydene.2010.03.138
  5. G. Gai, S. Kudriakov, B. Rogg et al., Int. J. Hydrogen Energy, 44 (31), 17015 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.225
  6. I.S. Yakovenko, M.F. Ivanov, A.D. Kiverin, K.S. Melnikova, Int. J. Hydrogen Energy 43, 1894 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.138
  7. I.S. Yakovenko, A.D. Kiverin, K.S. Melnikova, Fluids 6, 21 (2021). https://doi.org/10.3390/fluids6010021
  8. S. Yakovenko, I.S. Medvedkov, A.D. Kiverin, Russ. J. Phys. Chem. B 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
  9. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, et al., Russ. J. Phys. Chem. B 17 (4), 974 (2023). http://dx.doi.org/10.1134/S1990793123040309
  10. A.M. Tereza, G.L. Agafonov, E. K. Anderzhanov et al., Russ. J. Phys. Chem. B 17 (6), 1294 (2023). http://dx.doi.org/10.1134/S1990793123060246
  11. Moroshkina, E. Yakupov, V. Mislavskii et al., Acta Astronautica 215, 496 (2024). https://doi.org/10.1016/j.actaastro.2023.12.032
  12. D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969).
  13. Z. Hong, D.F. Davidson, R.K. Hanson, Combust. and Flame 158 (4), 633 (2011). https://doi.org/10.1016/j.combustflame.2010.10.002
  14. Keromnes, W.K. Metcalfe, K.A. Heufer, et al., Combust. and Flame 160, 995 (2013). https://doi.org/10.1016/j.combustflame.2013.01.001
  15. G.P. Smith, Y. Tao, H. Wang, Foundational Fuel Chemistry Model Version 1.0 (FFCM-1). 2016. http://web.stanford.edu/group/haiwanglab/FFCM-1/index.html
  16. H. Hashemi, J.M. Christensen, S. Gersen, P. Glarborg, Proc. Combust. Inst. 3, 553 (2015). https://doi.org/10.1016/j.proci.2014.05.101
  17. A.A. Konnov, Combust. and Flame 203, 14 (2019). https://doi.org/10.1016/j.combustflame.2019.01.032
  18. Y. Zhang, J. Fu, M. Xie, J. Liu, Int. J. Hydrogen Energy 46 (7), 5799 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.083
  19. P. Krivosheyev, Y. Kisel, A. Skilandz et al., Int. J. Hydrogen Energy 66, 81 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.363
  20. V.F. Nikitin, E.V. Mikhalchenko, L.I. Stamov et al., Acta Astronaut. 213, 156 (2023). https://doi.org/10.1016/j.actaastro.2023.08.036
  21. N.N. Smirnov, V.V. Azatyan, V.F. Nikitin et al., Int. J. Hydrogen Energy 49 (B2), 1315 (2023). https://doi.org/10.1016/j.ijhydene.2023.11.085.
  22. N.N. Smirnov, V.F. Nikitin, E.V. Mikhalchenko et al., Int. J. Hydrogen Energy 49 (B2), 495 (2023). https://doi.org/10.1016/j.ijhydene.2023.08.184
  23. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al., Russ. J. Phys. Chem. B 17 (6), 1294 (2023)..
  24. CHEMKIN-Pro 15112. Reaction Design, San Diego, CK-TUT-10112-1112-UG-1., 20
  25. Alekseev V. PhD. Theses. Lund, Sweden: Lunds Univ., 2015.
  26. A.E. Lutz, R.J. Kee, J.A. Miller, Sandia National Laboratories, Livermore, CA SAND 87-8248 (1998).
  27. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al., Russ. J. Phys. Chem. B, 18 (4), 965 (2024). https://doi.org/10.1134/S1990793124700416
  28. R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, Sandia National Laboratories, Livermore, CA, SAND85-8240 (1985).
  29. O.C. Kwon, G.M Faeth, Combust. and Flame 124, 590 (2001). https://doi.org/10.1016/S0010-2180(00)00229-7
  30. V.A. Bunev, V.N. Panfilov, and V.S. Babkin, Combust. Explos. Shock Waves 43 (2), 125 (2007). https://doi.org/10.1007/s10573-007-0017-2
  31. O.P. Korobeinichev, V.M. Shvartsberg, S.B. Il’in et al., Combust. Explos. Shock Waves 35 (3), 239 (1999). https://doi.org/10.1007/BF02674444
  32. V.V. Azatyan, Kinet. Catal. 61 (3), 319 (2020). https://doi.org/10.1134/S0023158420030039
  33. S. Medvedev, G. Agafonov, S. Khomik, Acta Astronautica 126, 150 (2016). https://doi.org/10.1016/j.actaastro.2016.04.019

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Concentration and temperature profiles (a) and temperature sensitivity analysis to reactions determining heat release in a laminar flame (b), calculated using the DCM from [19] for H2 in air (ϕ = 1) under standard initial conditions. H concentrations are multiplied by 5, O and OH by 10, HO2 by 500, and H2O2 by 5000.

下载 (2MB)
3. Fig. 2. The same as in Fig. 1, using the DCM from [14]. H concentrations are multiplied by 5, O and OH by 10, HO2 by 500, and H2O2 by 2000.

下载 (2MB)
4. Fig. 3. The same as in Fig. 2, using the DCM from [17]. The multiplying factors are the same.

下载 (3MB)
5. Fig. 4. Gradient [H2], calculated using the DCM from works [14, 17, 19].

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025